Yonghong Song | Deep Learning | Best Researcher Award

Prof. Yonghong Song | Deep Learning | Best Researcher Award

Professor at Xi’an Jiaotong University, China

Professor Song Yonghong is a distinguished academic and researcher at the School of Software Engineering, Xi’an Jiaotong University. As a recognized IEEE member and an active participant in several professional societies including the China Society of Image and Graphics (CSIG) and the China Computer Federation (CCF), she has significantly contributed to advancing the fields of computer vision and intelligent systems. She is also a certified Project Management Professional (PMP) by the American Project Management Institute, combining her academic insight with applied project management expertise. Her contributions to the field include a prolific output of over 100 high-quality publications and more than 20 authorized invention patents, which reflect her sustained impact in theoretical and applied research.

Profile

Scopus

Education

Professor Song’s educational background reflects a strong foundation in computer science and engineering. She pursued rigorous academic training in computer vision, pattern recognition, and artificial intelligence, which laid the groundwork for her subsequent contributions to academia and industry. Her academic preparation, combined with interdisciplinary training, equipped her to approach complex problems with a balance of theoretical depth and practical applicability. This educational trajectory enabled her to engage in and lead high-impact research projects both nationally and internationally, and to cultivate a strong research team within her institution.

Experience

Throughout her career, Professor Song has demonstrated consistent leadership in cutting-edge research and technological development. She has taken the lead on numerous international collaboration projects, national key R&D initiatives, and enterprise partnerships. Her work extends deeply into the real-world challenges associated with object detection and recognition in images and video, providing actionable insights and technological innovations for enterprises. In these roles, she has not only pushed forward the boundaries of academic research but has also ensured that the outcomes are translated into scalable, industry-grade solutions. Her experience spans applications such as intelligent copiers, automated steel surface inspection, and smart appliance systems, showcasing her commitment to cross-disciplinary impact and societal benefit.

Research Interests

Professor Song’s research interests primarily focus on computer vision, pattern recognition, and intelligent systems. She is particularly passionate about designing and refining methodologies for object detection and recognition, especially in real-time industrial environments. Her research addresses complex visual processing problems and develops intelligent solutions that are responsive to the demands of modern industrial applications. She has worked extensively on integrating deep learning algorithms into visual systems for improved performance and automation. Her work is characterized by a high degree of innovation, especially in translating theoretical frameworks into deployable systems.

Awards

Professor Song has been recognized for her excellence through several prestigious awards and honors. While many of her accolades are project-specific and rooted in collaborative successes, her standout achievement includes the development of the “Hot High-Speed Wire Surface Defect Online Detection System,” which was successfully implemented at Baoshan Iron and Steel Co., LTD. This system has proven to be stable, efficient, and internationally competitive in automating quality inspections. The industrial relevance and global recognition of this project exemplify the strength of her applied research. She has also received commendations for leadership in engineering practice and for promoting the industrialization of academic research outputs.

Publications

Professor Song has published over 100 articles in high-impact journals and conferences, with a focus on visual computing and intelligent systems. Selected publications include:

Song Y. et al., “Multi-Scale Feature Fusion for Surface Defect Detection,” IEEE Transactions on Industrial Informatics, 2021 – cited by 56 articles.

Song Y. et al., “Real-Time Target Detection in Complex Industrial Environments,” Pattern Recognition Letters, 2020 – cited by 47 articles.

Song Y. et al., “Deep Learning-based Anomaly Detection in Steel Production,” Journal of Visual Communication and Image Representation, 2019 – cited by 62 articles.

Song Y. et al., “Intelligent Vision System for Smart Appliances,” Sensors, 2022 – cited by 33 articles.

Song Y. et al., “CNN Architectures for Surface Quality Analysis,” Computer Vision and Image Understanding, 2020 – cited by 45 articles.

Song Y. et al., “Efficient Video Object Recognition using Hybrid Networks,” Neurocomputing, 2018 – cited by 50 articles.

Song Y. et al., “Robust Industrial Vision with Deep Supervision,” Machine Vision and Applications, 2021 – cited by 38 articles.

Conclusion

In summary, Professor Song Yonghong exemplifies the integration of academic excellence with industrial relevance. Her work in computer vision and intelligent systems is not only scientifically rigorous but also deeply practical, influencing both research and real-world systems. Her leadership in national and international collaborations, along with her commitment to solving critical industrial challenges, places her at the forefront of applied visual computing research. With an extensive portfolio of publications, patents, and successful enterprise collaborations, Professor Song continues to push the envelope in making intelligent technologies smarter, more robust, and more responsive to contemporary demands.

Yunxiang Lu | Neural Networks | Best Researcher Award

Dr. Yunxiang Lu | Neural Networks | Best Researcher Award

Ph.D | College of Automation & College of Artificial Intelligence | China

Dr. Yunxiang Lu is a dedicated researcher and academic currently affiliated with the College of Automation and the College of Artificial Intelligence at Nanjing University of Posts and Telecommunications, China. His work spans advanced topics in control science, neural networks, and ecological competition networks, underpinned by rigorous academic and practical experiences. Dr. Lu’s career is marked by his pursuit of ground breaking research, particularly in the realms of dynamic systems, network topology, and bifurcation analysis. Through a robust combination of theoretical exploration and simulation-based validation, he has significantly contributed to the field of artificial intelligence and control systems.

Profile

Scopus

Education

Dr. Lu embarked on a combined Master and Ph.D. program in Control Science and Engineering in 2019. As part of his academic journey, he is currently affiliated with the Polish Academy of Sciences – Institute of Systems Research for a year-long research collaboration. This academic foundation has provided him with a strong grasp of theoretical frameworks and hands-on application in control engineering, establishing him as a skilled scholar and innovator in his domain.

Experience

Dr. Lu’s professional experience includes a stint as an IT Technical Engineer at China Telecom Corporation, where he contributed to the 5G+MEC smart factory project, enhancing his expertise in telecommunications and automation. His role involved exploring the integration of 5G technologies in industrial applications, further broadening his technical horizon. Additionally, his active participation in academia includes leading research projects funded by Jiangsu Province, with notable achievements in ecological competition networks and time-delay feedback control mechanisms.

Research Interests

Dr. Lu’s research interests focus on fractional-order systems, neural networks, ecological dynamics, and the control of anomalous diffusion processes. He aims to uncover the intricate behaviors of complex networks influenced by various dynamic parameters. His work explores how time delays, fractional orders, and network topologies impact system stability and evolution, with applications ranging from neural systems to cyber-physical and ecological networks.

Awards and Honors

Dr. Lu has received numerous accolades recognizing his academic excellence and contributions. Notably, he was honored as the Excellent Graduate of Nanjing University of Posts and Telecommunications in 2022 and received the prestigious Postgraduate Academic Scholarship awards multiple times during his tenure. These distinctions underscore his dedication and consistent performance in both research and academics.

Publications

Dr. Lu has co-authored several impactful publications in esteemed journals.

Tipping prediction of a class of large-scale radial-ring neural networks

    • Authors: Lu, Y., Xiao, M., Wu, X., Cao, J., Zheng, W.X.
    • Publication Year: 2025
    • Citations: 0

Complex pattern evolution of a two-dimensional space diffusion model of malware spread

    • Authors: Cheng, H., Xiao, M., Lu, Y., Rutkowski, L., Cao, J.
    • Publication Year: 2024
    • Citations: 0

Spatiotemporal Evolution of Large-Scale Bidirectional Associative Memory Neural Networks With Diffusion and Delays

    • Authors: Lu, Y., Xiao, M., Liang, J., Wang, Z., Cao, J.
    • Publication Year: 2024
    • Citations: 1

Stability and Bifurcation Exploration of Delayed Neural Networks with Radial-Ring Configuration and Bidirectional Coupling

    • Authors: Lu, Y., Xiao, M., He, J., Wang, Z.
    • Publication Year: 2024
    • Citations: 6

Stability and Dynamics Analysis of Time-Delay Fractional-Order Large-Scale Dual-Loop Neural Network Model With Cross-Coupling Structure

    • Authors: Du, X., Xiao, M., Qiu, J., Lu, Y., Cao, J.
    • Publication Year: 2024
    • Citations: 0

QUALITATIVE ANALYSIS OF HIGH-DIMENSIONAL NEURAL NETWORKS WITH THREE-LAYER STRUCTURE AND MULTIPLE DELAYS

    • Authors: He, J., Xiao, M., Lu, Y., Sun, Y., Cao, J.
    • Publication Year: 2024
    • Citations: 0

Early warning of tipping in a chemical model with cross-diffusion via spatiotemporal pattern formation and transition

    • Authors: Lu, Y., Xiao, M., Huang, C., Wang, Z., Cao, J.
    • Publication Year: 2023
    • Citations: 8

Tipping point prediction and mechanism analysis of malware spreading in cyber–physical systems

    • Authors: Xiao, M., Chen, S., Zheng, W.X., Wang, Z., Lu, Y.
    • Publication Year: 2023
    • Citations: 10

Control of tipping in a small-world network model via a novel dynamic delayed feedback scheme

    • Authors: He, H., Xiao, M., Lu, Y., Wang, Z., Tao, B.
    • Publication Year: 2023
    • Citations: 9

Bifurcation Dynamics Analysis of A Class of Fractional Neural Networks with Mixed Delays

    • Authors: Luan, Y., Lu, Y., Xiao, M., Zhang, J.
    • Publication Year: 2023
    • Citations: 0

Conclusion

Dr. Yunxiang Lu exemplifies the synthesis of academic brilliance, practical expertise, and research acumen. His dedication to advancing knowledge in control systems and artificial intelligence positions him as a visionary scholar in his field. Through his continued exploration of dynamic networks and innovative control strategies, he remains committed to addressing complex challenges in modern science and technology.