Dr. Ameni Chetouane | Computer Science | Best Researcher Award
Contractual assistant at Higher Institute of Computer Science – Tunisia (ISI), Tunisia
Ameni Chetouane is a dedicated doctoral student specializing in computer science, currently pursuing her PhD at the Ecole Nationale des Sciences de l’Informatique (ENSI) at the University of Manouba, Tunisia. Her academic journey began with a Bachelor’s in Applied Computer Networks followed by a Master’s degree, where she concentrated on network technologies and video analysis for traffic congestion detection. She is deeply involved in research aimed at securing Software Defined Networking (SDN) systems against cyber-attacks using Artificial Intelligence (AI) methods.
Profile
Education
Ameni’s education spans several years, starting with a Bachelor’s degree in Applied Computer Networks from the Institut Supérieur d’Informatique de Mahdia (ISIMA) in 2014. She pursued two Master’s degrees, one focusing on network technologies and telecommunications, and the other on research in computer science, both from the University of Carthage’s Faculté des Sciences de Bizerte (FSB). Her doctoral studies, commenced in 2021, are focused on the application of AI for intrusion detection systems (IDS) in SDN environments, with a goal to combat cyber-attacks.
Experience
Ameni has gained practical teaching experience as a part-time instructor at the Institut Supérieur des Etudes Technologiques de Bizerte and the Faculté des Sciences de Bizerte, where she taught subjects such as database engineering and object-oriented programming. Her internships, including research at LaBRI, University of Bordeaux, and her professional project at Millénia Engineering, have allowed her to apply theoretical knowledge in real-world network and software development projects.
Research Interests
Ameni’s research is primarily focused on the security of SDN environments, particularly in utilizing AI for effective threat detection and mitigation. Her doctoral thesis specifically explores AI-driven solutions for securing SDN systems against Distributed Denial of Service (DDoS) attacks. She aims to improve the performance of IDSs by incorporating machine learning (ML) and continual learning methods into SDN security architectures, ensuring adaptive and real-time defenses against evolving threats.
Awards
Ameni has earned recognition for her academic and research excellence, notably her significant contributions to the field of SDN and AI. Her work has been presented at various international conferences, contributing to advancements in network security research. While specific awards are not listed, her impact within the academic community, through her publications and conference participations, is considerable.
Publications
Ameni Chetouane, Sabra Mabrouk, Imen Jemili, and Mohamed Mosbah. “A comparative study of vehicle detection methods in a video sequence.” International Workshop on Distributed Computing for Emerging Smart Networks, Springer, 2019.
Ameni Chetouane, Sabra Mabrouk, Imen Jemili, and Mohamed Mosbah. “Vision-based vehicle detection for road traffic congestion classification.” Concurrency and Computation: Practice and Experience, 2022.
Ameni Chetouane, Sabra Mabrouk, and Mohamed Mosbah. “Traffic congestion detection: Solutions, open issues, and challenges.” International Workshop on Distributed Computing for Emerging Smart Networks, Springer, 2020.
Ameni Chetouane and Kamel Karoui. “A survey of machine learning methods for DDoS threats detection against SDN.” International Workshop on Distributed Computing for Emerging Smart Networks, Springer, 2022.
Ameni Chetouane, Kamel Karoui, and Ghayth Nemri. “An intelligent ML-based IDS framework for DDoS detection in the SDN environment.” International Conference on Advances in Mobile Computing and Multimedia Intelligence, Springer, 2022.
Ameni Chetouane and Kamel Karoui. “DDoS detection approach based on continual learning in the SDN environment.” International Conference on Hybrid Intelligent Systems, Springer, 2022.
Ameni Chetouane and Kamel Karoui. “Risk-based intrusion detection system in Software Defined Networking.” Concurrency and Computation: Practice and Experience, 2023.
Conclusion
Ameni Chetouane stands out in her field with a robust educational background, strong professional experiences, and an ongoing commitment to researching the intersection of AI and SDN security. Through her published works, she has made significant contributions to securing networks using intelligent methods, focusing on solving complex cyber threats in modern network infrastructures. As she continues her research, her work promises to shape the future of AI-driven cybersecurity in SDN environments.