Zhouchen Lin | Deep Learning | Global Impact in Research Award

Prof. Dr. Zhouchen Lin | Deep Learning | Global Impact in Research Award

Associate Dean at Peking University, China

Zhouchen Lin is a renowned academician and a distinguished figure in the field of machine learning and artificial intelligence, currently serving as the Associate Dean and Boya Special Professor at the School of Intelligence Science and Technology, Peking University. He also holds prominent roles as the Associate Director of the Key Laboratory of Machine Intelligence and Director of the Center for Machine Learning at Peking University’s Institute for Artificial Intelligence. With a strong foundation in mathematics and a career that spans academia and industrial research, his contributions to the theoretical and applied domains of AI have positioned him as a leading voice in the field.

Profile

Google Scholar

Education

Zhouchen Lin’s educational journey is deeply rooted in mathematics. He earned his Ph.D. from the School of Mathematics, Peking University in July 2000. Prior to this, he completed his M.Phil. at the Hong Kong Polytechnic University in July 1997, his M.S. in Mathematics at Peking University in July 1995, and his B.S. in Mathematics from Nankai University in July 1993. His robust academic background in mathematical theory has been instrumental in shaping his pioneering work in artificial intelligence and optimization algorithms.

Experience

Lin’s professional trajectory includes a blend of academic and research positions. Since November 2021, he has been a Professor at the School of Intelligence Science and Technology, Peking University. He was previously a professor in the Department of Machine Intelligence at Peking University’s School of EECS from 2012 to 2021. His industry research career was primarily at Microsoft Research Asia, where he worked in multiple roles from 2000 to 2012, including as a Lead Researcher in the Visual Computing Group. His adjunct roles span institutions like the Chinese University of Hong Kong (Shenzhen), Samsung Research, and Southeast University, underscoring his collaborative influence across academia and industry.

Research Interest

Zhouchen Lin’s research interests encompass machine learning, computer vision, and numerical optimization. Within machine learning, he specializes in sparse and low-rank representation, deep learning, and spiking neural networks. His computer vision work includes object detection, segmentation, and recognition. He also delves into optimization techniques, focusing on both convex and nonconvex optimization as well as stochastic and asynchronous optimization, contributing extensively to the development of scalable algorithms in AI.

Award

Lin has received numerous prestigious accolades recognizing his scientific excellence. These include the First Prize of the CAA and CAAI Natural Science Awards in 2024 and 2023, respectively, and the CCF Natural Science Award in 2020. He is a recipient of the Okawa Research Grant and the Microsoft SPOT Award. Additionally, he was named a Distinguished Young Scholar by the Natural Science Foundation of China and has been honored multiple times as an Excellent Ph.D. Supervisor. He is a Fellow of IEEE, IAPR, CSIG, and AAIA, reflecting his eminent standing in the global research community.

Publication

Among Lin’s prolific research outputs, several key papers stand out. In 2024, he co-authored “Designing Universally-Approximating Deep Neural Networks: A First-Order Optimization Approach” published in IEEE Transactions on Pattern Analysis and Machine Intelligence (46(9): 6231-6246), which examines optimization strategies for deep networks. Another 2024 paper, “Pareto Adversarial Robustness” in SCIENCE CHINA Information Sciences, explores robustness in AI models. His 2023 work, “Equilibrium Image Denoising with Implicit Differentiation” appeared in IEEE Transactions on Image Processing (32: 1868-1881), gaining attention for its innovative denoising framework. “SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural Networks” (Neural Networks, 161, 2023) is influential in neuromorphic computing. Lin’s foundational 2013 work, “Robust Recovery of Subspace Structures by Low-Rank Representation,” published in IEEE TPAMI (35(1): 171-184), has been widely cited (over 3,000 times) and significantly influenced subspace clustering. Another cornerstone publication is the 2020 article, “Accelerated First-Order Optimization Algorithms for Machine Learning” in Proceedings of the IEEE (108(11): 2067-2082), which consolidated advances in gradient methods. Finally, his 2022 contribution, “Optimization Induced Equilibrium Networks” in IEEE TPAMI (45(3): 3604-3616), bridges theoretical optimization and deep learning model design.

Conclusion

Zhouchen Lin exemplifies excellence in research, teaching, and academic leadership within artificial intelligence and related mathematical sciences. His influential research, global recognition, and deep commitment to mentorship have collectively enriched the AI research landscape. As both a thought leader and innovator, he continues to push the boundaries of AI, enabling robust, interpretable, and efficient machine learning solutions for real-world challenges.

Yao Zheng | Neural Networks | Best Researcher Award

Prof. Yao Zheng | Neural Networks | Best Researcher Award

Professor | Zhejiang University | China

Yao Zheng is the Cheung Kong Chair Professor at the School of Aeronautics and Astronautics, Zhejiang University, China. With extensive academic and professional experience in computational mechanics and aerospace sciences, he has contributed significantly to these fields through pioneering research and leadership. His career has spanned academia and industry, including tenures at NASA and Siemens, reflecting his global expertise. His work combines engineering, mechanics, and computational science, underpinned by a commitment to innovation and education.

Profile

Scopus

Education

Yao Zheng earned his Ph.D. in Civil Engineering from the University of Wales Swansea (now Swansea University) in 1994, specializing in computational engineering. Before this, he obtained an M.Sc. in Solid Mechanics from Harbin Institute of Technology in 1986 and a B.Sc. in Mathematics from Hangzhou University in 1984. His educational background integrates mathematical precision with engineering application, forming the foundation for his interdisciplinary research.

Professional Experience

Yao Zheng’s professional journey began as a senior research assistant during his Ph.D. studies, which laid the groundwork for his future endeavors. He served as a Senior Research Scientist at NASA Glenn Research Center and later as a Senior Software Scientist at CD-adapco, contributing to cutting-edge aerospace and computational solutions. Since 2007, he has held a Chair Professorship at Zhejiang University, where he also served in leadership roles, including Vice Dean of the Faculty of Engineering. As Director of the Center for Engineering and Scientific Computation, he has driven innovation in computational methods and aerospace research.

Research Interests

Yao Zheng’s research focuses on computational mechanics, numerical simulation, and flight vehicle design. His work bridges aerospace science, mechanics, and computer science, advancing technologies in propulsion and structural analysis. With over 400 publications, he has contributed significantly to understanding complex systems, ensuring his research has practical and academic relevance.

Awards

Yao Zheng’s achievements are recognized by numerous prestigious awards. These include the ACM Gordon Bell Prize finalist in 2023, the Best Chinese Supercomputing Application Award in 2023, and the Qian Ling-Xi Achievement Award for Computational Mechanics in 2018. His contributions have been celebrated with the Natural Science Award of Zhejiang Province and multiple honors for technological progress and computational methods in engineering, reflecting his influence in the field.

Selected Publications

Zheng, Y. (2023). “High-Performance Computational Mechanics for Complex Aerospace Systems.” Aerospace Research Communications. [Cited by: 15 articles].

Zheng, Y., & Coauthors (2020). “Numerical Simulations of Hypersonic Flow Structures.” Engineering Applications of Computational Fluid Mechanics. [Cited by: 32 articles].

Zheng, Y. (2018). “Flight Vehicle Structural Optimization Using Computational Techniques.” Chinese Journal of Computational Mechanics. [Cited by: 20 articles].

Zheng, Y., & Wang, L. (2016). “Advances in Propulsion Technology via Numerical Modeling.” Communications in Computational Physics. [Cited by: 25 articles].

Zheng, Y. (2013). “Computational Approaches to Aerospace Design Challenges.” Journal of Aerospace Science and Technology. [Cited by: 40 articles].

Conclusion

Yao Zheng’s illustrious career demonstrates a commitment to excellence in aerospace engineering and computational mechanics. His leadership, research contributions, and global recognition highlight his status as a pioneer in the field. As a mentor and innovator, he continues to shape the future of aerospace science, inspiring the next generation of engineers and researchers.