Yonghong Song | Deep Learning | Best Researcher Award

Prof. Yonghong Song | Deep Learning | Best Researcher Award

Professor at Xi’an Jiaotong University, China

Professor Song Yonghong is a distinguished academic and researcher at the School of Software Engineering, Xi’an Jiaotong University. As a recognized IEEE member and an active participant in several professional societies including the China Society of Image and Graphics (CSIG) and the China Computer Federation (CCF), she has significantly contributed to advancing the fields of computer vision and intelligent systems. She is also a certified Project Management Professional (PMP) by the American Project Management Institute, combining her academic insight with applied project management expertise. Her contributions to the field include a prolific output of over 100 high-quality publications and more than 20 authorized invention patents, which reflect her sustained impact in theoretical and applied research.

Profile

Scopus

Education

Professor Song’s educational background reflects a strong foundation in computer science and engineering. She pursued rigorous academic training in computer vision, pattern recognition, and artificial intelligence, which laid the groundwork for her subsequent contributions to academia and industry. Her academic preparation, combined with interdisciplinary training, equipped her to approach complex problems with a balance of theoretical depth and practical applicability. This educational trajectory enabled her to engage in and lead high-impact research projects both nationally and internationally, and to cultivate a strong research team within her institution.

Experience

Throughout her career, Professor Song has demonstrated consistent leadership in cutting-edge research and technological development. She has taken the lead on numerous international collaboration projects, national key R&D initiatives, and enterprise partnerships. Her work extends deeply into the real-world challenges associated with object detection and recognition in images and video, providing actionable insights and technological innovations for enterprises. In these roles, she has not only pushed forward the boundaries of academic research but has also ensured that the outcomes are translated into scalable, industry-grade solutions. Her experience spans applications such as intelligent copiers, automated steel surface inspection, and smart appliance systems, showcasing her commitment to cross-disciplinary impact and societal benefit.

Research Interests

Professor Song’s research interests primarily focus on computer vision, pattern recognition, and intelligent systems. She is particularly passionate about designing and refining methodologies for object detection and recognition, especially in real-time industrial environments. Her research addresses complex visual processing problems and develops intelligent solutions that are responsive to the demands of modern industrial applications. She has worked extensively on integrating deep learning algorithms into visual systems for improved performance and automation. Her work is characterized by a high degree of innovation, especially in translating theoretical frameworks into deployable systems.

Awards

Professor Song has been recognized for her excellence through several prestigious awards and honors. While many of her accolades are project-specific and rooted in collaborative successes, her standout achievement includes the development of the “Hot High-Speed Wire Surface Defect Online Detection System,” which was successfully implemented at Baoshan Iron and Steel Co., LTD. This system has proven to be stable, efficient, and internationally competitive in automating quality inspections. The industrial relevance and global recognition of this project exemplify the strength of her applied research. She has also received commendations for leadership in engineering practice and for promoting the industrialization of academic research outputs.

Publications

Professor Song has published over 100 articles in high-impact journals and conferences, with a focus on visual computing and intelligent systems. Selected publications include:

Song Y. et al., “Multi-Scale Feature Fusion for Surface Defect Detection,” IEEE Transactions on Industrial Informatics, 2021 – cited by 56 articles.

Song Y. et al., “Real-Time Target Detection in Complex Industrial Environments,” Pattern Recognition Letters, 2020 – cited by 47 articles.

Song Y. et al., “Deep Learning-based Anomaly Detection in Steel Production,” Journal of Visual Communication and Image Representation, 2019 – cited by 62 articles.

Song Y. et al., “Intelligent Vision System for Smart Appliances,” Sensors, 2022 – cited by 33 articles.

Song Y. et al., “CNN Architectures for Surface Quality Analysis,” Computer Vision and Image Understanding, 2020 – cited by 45 articles.

Song Y. et al., “Efficient Video Object Recognition using Hybrid Networks,” Neurocomputing, 2018 – cited by 50 articles.

Song Y. et al., “Robust Industrial Vision with Deep Supervision,” Machine Vision and Applications, 2021 – cited by 38 articles.

Conclusion

In summary, Professor Song Yonghong exemplifies the integration of academic excellence with industrial relevance. Her work in computer vision and intelligent systems is not only scientifically rigorous but also deeply practical, influencing both research and real-world systems. Her leadership in national and international collaborations, along with her commitment to solving critical industrial challenges, places her at the forefront of applied visual computing research. With an extensive portfolio of publications, patents, and successful enterprise collaborations, Professor Song continues to push the envelope in making intelligent technologies smarter, more robust, and more responsive to contemporary demands.

Farhat Nasim | Artificial Intelligence | Best Researcher Award

Ms. Farhat Nasim | Artificial Intelligence | Best Researcher Award

ASSISTANT PROFESSOR GUEST at Jamia Millia Islamia, India

Ms. Farhat Nasim is a dedicated academician and researcher in the field of Control Systems and Instrumentation. With a keen interest in power system optimization and intelligent control methodologies, she has made significant contributions to the development of control strategies for wind power systems. Currently pursuing her Ph.D. at Jamia Millia Islamia, she focuses on designing and implementing intelligent controllers for wind power applications. Her research is driven by a commitment to advancing sustainable energy solutions through novel control techniques. Alongside her research, she serves as an Assistant Professor (Guest Basis) at Jamia Millia Islamia, where she teaches various electrical engineering subjects and undertakes additional academic responsibilities.

Profile

Scopus

Education

Ms. Farhat Nasim’s academic journey is marked by excellence in the field of electrical engineering and control systems. She is currently a Ph.D. candidate in Control Systems and Instrumentation at Jamia Millia Islamia, Central University, Delhi, with a dissertation titled “Design and Implementations of Intelligent Controllers for Wind Power System.” Prior to her doctoral studies, she earned her Master of Technology (M.Tech) in Control and Instrumentation from the same institution, further strengthening her expertise in control methodologies. She also holds a Bachelor of Technology (B.Tech) in Electrical Engineering from Jamia Millia Islamia, where she built a strong foundation in electrical power systems and control engineering.

Professional Experience

Ms. Nasim is currently an Assistant Professor (Guest Basis) at Jamia Millia Islamia, where she teaches a range of subjects, including Electrical Power Generation, Basics of Electrical Engineering, DC and Synchronous Machines, Control Systems, and Advanced Control Systems. Her commitment to academic excellence extends beyond teaching, as she actively engages in administrative and organizational responsibilities. She has served as the Coordinator for the 6th Semester B.Tech students’ Industrial Visit at Losung Automation Pvt. Ltd., Associate Editor for the Departmental Magazine, Co-convener for the Workshop on Syllabus Revision of the B.Tech (EE) program, and Attendance Compiling In-Charge for all B.Tech semesters. Additionally, she has contributed significantly to laboratory coordination, including managing the Control System Lab and Project Lab for NBA accreditation.

Research Interests

Ms. Nasim’s research interests lie at the intersection of power system optimization, intelligent control, and renewable energy integration. Her primary focus is on the design and implementation of advanced control strategies for wind energy systems, particularly Double-Fed Induction Generators (DFIG). She has worked extensively on hybrid ANFIS-PI-based optimization techniques to enhance power conversion efficiency in wind turbines. Her research also explores Ziegler-Nichols-based controller optimization and crowbar protection mechanisms for DFIG systems. Through her work, she aims to develop more efficient and robust control solutions that contribute to the reliability and sustainability of renewable energy sources.

Awards and Achievements

Ms. Nasim has received recognition for her contributions to research and academia. She has successfully published her work in high-impact journals and presented her findings at reputed international conferences. Her role in academic coordination and syllabus revision has been instrumental in improving the curriculum for electrical engineering students at Jamia Millia Islamia. Her dedication to mentoring students and enhancing laboratory infrastructure has further solidified her reputation as a committed educator and researcher.

Publications

Nasim, F., Khatoon, S., Ibraheem, Urooj, S., Shahid, M., Ali, A., & Nasser, N. (2025). Hybrid ANFIS-PI-Based Optimization for Improved Power Conversion in DFIG Wind Turbine. Sustainability, 17(6), 2454. https://doi.org/10.3390/su17062454 (SCI)

Nasim, F., Khatoon, S., Shahid, M., Baranwal, S., & Ahmad Wani, S. (2024). Ziegler-Nichols Based Controller Optimization for DFIG Wind Turbines. Tuijin Jishu/Journal of Propulsion Technology, 45(2). https://doi.org/10.52783/tjjpt.v45.i02.6966 (SCOPUS)

Nasim, F., et al. (2022). Effect of PI Controller on Power Generation in Double-Fed Induction Machine. 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), IEEE. doi: 10.1109/ICAC3N56670.2022.10074573.

Nasim, F., et al. (2024). Implementation of Crowbar Protection in DFIG. Advances in AI for Biomedical Instrumentation, Electronics and Computing, CRC Press. (Taylor and Francis Conference)

Nasim, F., et al. (2023). Field Control Grid Connected DFIG Turbine System. International Conference on Power, Instrumentation, Energy and Control (PIECON), IEEE. doi: 10.1109/PIECON56912.2023.10085726.

Conclusion

Ms. Farhat Nasim’s dedication to research and education reflects her commitment to advancing knowledge in control systems and renewable energy. Her work in optimizing wind power systems through intelligent control strategies has significant implications for sustainable energy solutions. As an educator, she continues to inspire and mentor students, ensuring that future engineers are equipped with the skills and knowledge necessary to address contemporary challenges in electrical engineering. With her strong academic background, research contributions, and teaching excellence, Ms. Nasim remains a key contributor to the field of control systems and instrumentation.

Sara Masiero | Artificial Intelligence | Outstanding Contributions in Academia Award

Mrs. Sara Masiero | Artificial Intelligence | Outstanding Contributions in Academia Award

Collaboratrice at Scuola Universitaria Professionale della Svizzera Italiana, Switzerland

Sara Masiero is a dedicated and forward-thinking management engineer with a strong passion for innovation and digital transformation. She thrives on discovering new concepts and implementing solutions that enhance industrial efficiency, sustainability, and resilience. A firm believer in the power of serenity, she fosters an environment conducive to creativity and proactive engagement. Beyond her professional endeavors, Sara embraces adventure and cultural exploration, always seeking experiences that resonate with her positive energy.

Profile

Scopus

Education

Sara Masiero pursued her higher education at the University of Applied Sciences and Arts of Southern Switzerland (SUPSI), where she obtained a Master of Science in Engineering (2018-2021). During her academic journey, she actively engaged in research projects focusing on optimizing industrial systems and integrating digital tools for process enhancement. Prior to her master’s degree, she earned a Bachelor of Science in Ingegneria Gestionale (2015-2018) from the same institution. She further honed her expertise through specialized programs, including the English Summer School at Horner School of English, AIGreen Business Lab by EIT Digital, and professional training in learning assessment methodologies.

Experience

Sara Masiero has amassed substantial experience in both academia and industry, contributing to projects that merge theoretical research with practical applications. Since November 2018, she has been serving as a scientific collaborator at SUPSI, where she plays a pivotal role in research and scientific development within the realm of Industry 4.0 and 5.0. Her work emphasizes human-centered industrial paradigms, sustainability, and resilience, while she also manages digital processes for EU H2020 projects and provides training in Industrial Engineering courses.

Between January 2023 and February 2024, Sara worked as a Business Process Manager at Masiero G. Srl and Z. Account Service Srl, overseeing financial and commercial processes related to sales, customer service, and supplier relations. She also ensured regulatory compliance and operational efficiency through effective bureaucratic and administrative process management. Earlier, she collaborated with STISA SA and LINNEA (September 2020 – February 2021) to develop her master’s thesis on optimizing material flows and warehouse layouts in logistics systems. Additionally, during her bachelor’s studies, she worked with RIRI SA (June 2018 – September 2018) on a thesis analyzing raw material purchasing processes with a focus on sustainability.

Research Interests

Sara Masiero’s research interests are deeply rooted in industrial innovation, digital transformation, and sustainability. She focuses on the integration of advanced digital tools in production systems, addressing the challenges and opportunities presented by Industry 4.0 and 5.0. Her work revolves around Quality Management advancements, human-centric industrial paradigms, and AI-driven digital platforms that enhance manufacturing processes. Furthermore, she explores methodologies for optimizing supply chain operations and ensuring regulatory compliance within rapidly evolving technological landscapes.

Awards and Recognition

Throughout her academic and professional journey, Sara has been recognized for her contributions to research and process optimization in industrial settings. Her innovative approach to digital transformation and industrial efficiency has earned her accolades in academic conferences and industry collaborations. She has actively participated in prestigious projects and workshops, further cementing her reputation as a knowledgeable and influential figure in the field of industrial engineering and management.

Publications

Corti, D., Masiero, S., & Gladysz, B. (2021). “Impact of Industry 4.0 on Quality Management: Identification of main challenges towards a Quality 4.0 approach.” IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1-8.

Masiero, S., Qosaj, J., & Cutrona, V. (2024). “Digital Datasheet model: enhancing value of AI digital platforms.” Procedia Computer Science, 232, 149-158.

Masiero, S., Qosaj, J., Bettoni, A., & Gladysz, B. (2024). “Technology-Driven Measures for Human Centricity in the Manufacturing Sector.” International Association for the Management of Technology Conference, pp. 81-88, Cham: Springer Nature Switzerland.

Conclusion

Sara Masiero exemplifies the essence of a modern engineer—one who seamlessly integrates research, industry expertise, and a passion for innovation. Her extensive experience in digital transformation, quality management, and process optimization makes her a valuable contributor to the fields of industrial engineering and management. With a strong academic background, diverse professional experience, and a commitment to sustainability and human-centric methodologies, Sara continues to drive meaningful advancements in Industry 4.0 and 5.0. Her contributions to research and industry projects underscore her ability to bridge theoretical knowledge with practical applications, paving the way for smarter, more resilient production systems in the future.