Gabriel Osei Forkuo | Machine Learning | Best Researcher Award

Mr. Gabriel Osei Forkuo | Machine Learning | Best Researcher Award

Doctoral Researcher/ Research Assistant at Transilvania University of Brasov, Romania

Gabriel Osei Forkuo is a dedicated forestry specialist and researcher with an extensive background in forest operations engineering, postural ergonomics, and machine learning applications. He has built a career that merges practical field experience with academic research, contributing significantly to the development of innovative and cost-effective technologies in forest monitoring and conservation. Currently pursuing a Ph.D. in Forest Operations Engineering at Transilvania University of Brasov, Romania, Gabriel has emerged as a leading figure in the exploration of low-cost LiDAR technologies and smart solutions for ergonomic assessments in forestry. His multifaceted expertise is grounded in over two decades of professional service in teaching, field operations, and advanced scientific investigations.

Profile

Orcid

Education

Gabriel’s educational journey is marked by academic excellence and a continuous drive for specialized knowledge. He is currently enrolled in a Ph.D. program in Forest Operations Engineering at Transilvania University of Brasov, where his research focuses on integrating machine learning and computer vision for ergonomic assessments in forest operations. He previously earned a Master’s degree in Multiple Purpose Forestry from the same university, achieving excellent grades and a cumulative ECTS average of 9.76. His foundational studies include a Bachelor of Science degree in Natural Resources Management from Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, where he graduated with First Class Honours. Earlier academic milestones include completing his GCE A-Level in science subjects and his GCE O-Level in science, supported by performance scholarships recognizing his consistent academic distinction.

Experience

Gabriel’s professional experience spans across teaching, research, and forest management. Between 2002 and 2011, he worked as a Forest Range Manager and Supervisor at the Forestry Commission Ghana, where he was instrumental in nursery planning, restoration of degraded forests, and report writing. From 1999 to 2001, he served as a Science and Maths Teacher at Maria Montessori School in Kumasi, followed by a role as a Teaching Assistant at his alma mater, Kwame Nkrumah University of Science and Technology. In this capacity, he conducted laboratory classes, supervised research data collection, and participated in academic presentations, establishing a strong foundation in both pedagogical and research methodologies. His leadership in afforestation programs and practical forest management further reflects his field-based competency and organizational capability.

Research Interest

Gabriel’s research interests are centered on forest operations engineering, with a special focus on postural ergonomics, machine learning applications, and smart technologies for environmental monitoring. He is passionate about developing affordable and efficient technological solutions, particularly the use of mobile LiDAR and AI-driven tools for soil disturbance estimation and posture evaluation in forest labor. His interdisciplinary approach merges forestry, computer science, and ergonomics, contributing to sustainable and safe forestry practices. Through these interests, he aims to bridge the gap between traditional forestry operations and modern intelligent systems.

Award

Gabriel’s academic and professional contributions have been recognized through several prestigious scholarships and awards. He has twice secured first place in the “My Bachelor/Dissertation Project” competitions held in 2022 and 2023, scoring nearly perfect marks. In 2022, he received the “Premiul special pentru studenti straini” award at the Premiul AFCO. He has also been a recipient of multiple scholarships, including the Transilvania Academica Scholarship, UNITBV Ph.D. Scholarship for International Graduates, and funding from “Proiectul Meu de Diploma” programs. Earlier in his career, he was awarded performance scholarships by the Government of Ghana and Poku Transport Ghana for his outstanding performance in forest sciences.

Publication

Gabriel has authored several notable publications that demonstrate his expertise in forest operations and technological innovation. His key works include:

Forkuo, G.O., & Borz, S.A. (2023). Accuracy and inter-cloud precision of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations. Frontiers in Forests and Global Change, 6. Cited in multiple studies on forest soil impact monitoring.

Forkuo, G.O. (2023). A systematic survey of conventional and new postural assessment methods. Revista Padurilor, 138(3), 1-34.

Borz, S.A., Morocho Toaza, J.M., Forkuo, G.O., Marcu, M.V. (2022). Potential of measure app in estimating log biometrics: a comparison with conventional log measurement. Forests, 13(7), 1028.

Borz, S.A., Forkuo, G.O., Oprea-Sorescu, O., & Proto, A.R. (2022). Development of a robust machine learning model to monitor the operational performance of sawing machines. Forests, 13(7), 1115.

Forkuo, G.O., Proto, A.R., & Borz, S.A. (2024). Feasibility of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations. SSRN.

Forkuo, G.O. (1999). Post-fire tree regeneration studies in the Kumawu Water Supply Forest Reserve. B.Sc. Thesis, KNUST-Kumasi.

Presented paper at FORMEC 2023 in Florence, Italy, highlighting applications of mobile LiDAR in operational environments.

Conclusion

Gabriel Osei Forkuo exemplifies the intersection of academic rigor, practical expertise, and technological innovation in the field of forest operations. His work continues to advance the integration of smart technologies into sustainable forestry, driven by a deep commitment to both ecological preservation and worker safety. Through his research, publications, and leadership roles, Gabriel has built a profile of excellence, contributing significantly to forestry engineering and shaping the next generation of sustainable forest management solutions.

Farhat Nasim | Artificial Intelligence | Best Researcher Award

Ms. Farhat Nasim | Artificial Intelligence | Best Researcher Award

ASSISTANT PROFESSOR GUEST at Jamia Millia Islamia, India

Ms. Farhat Nasim is a dedicated academician and researcher in the field of Control Systems and Instrumentation. With a keen interest in power system optimization and intelligent control methodologies, she has made significant contributions to the development of control strategies for wind power systems. Currently pursuing her Ph.D. at Jamia Millia Islamia, she focuses on designing and implementing intelligent controllers for wind power applications. Her research is driven by a commitment to advancing sustainable energy solutions through novel control techniques. Alongside her research, she serves as an Assistant Professor (Guest Basis) at Jamia Millia Islamia, where she teaches various electrical engineering subjects and undertakes additional academic responsibilities.

Profile

Scopus

Education

Ms. Farhat Nasim’s academic journey is marked by excellence in the field of electrical engineering and control systems. She is currently a Ph.D. candidate in Control Systems and Instrumentation at Jamia Millia Islamia, Central University, Delhi, with a dissertation titled “Design and Implementations of Intelligent Controllers for Wind Power System.” Prior to her doctoral studies, she earned her Master of Technology (M.Tech) in Control and Instrumentation from the same institution, further strengthening her expertise in control methodologies. She also holds a Bachelor of Technology (B.Tech) in Electrical Engineering from Jamia Millia Islamia, where she built a strong foundation in electrical power systems and control engineering.

Professional Experience

Ms. Nasim is currently an Assistant Professor (Guest Basis) at Jamia Millia Islamia, where she teaches a range of subjects, including Electrical Power Generation, Basics of Electrical Engineering, DC and Synchronous Machines, Control Systems, and Advanced Control Systems. Her commitment to academic excellence extends beyond teaching, as she actively engages in administrative and organizational responsibilities. She has served as the Coordinator for the 6th Semester B.Tech students’ Industrial Visit at Losung Automation Pvt. Ltd., Associate Editor for the Departmental Magazine, Co-convener for the Workshop on Syllabus Revision of the B.Tech (EE) program, and Attendance Compiling In-Charge for all B.Tech semesters. Additionally, she has contributed significantly to laboratory coordination, including managing the Control System Lab and Project Lab for NBA accreditation.

Research Interests

Ms. Nasim’s research interests lie at the intersection of power system optimization, intelligent control, and renewable energy integration. Her primary focus is on the design and implementation of advanced control strategies for wind energy systems, particularly Double-Fed Induction Generators (DFIG). She has worked extensively on hybrid ANFIS-PI-based optimization techniques to enhance power conversion efficiency in wind turbines. Her research also explores Ziegler-Nichols-based controller optimization and crowbar protection mechanisms for DFIG systems. Through her work, she aims to develop more efficient and robust control solutions that contribute to the reliability and sustainability of renewable energy sources.

Awards and Achievements

Ms. Nasim has received recognition for her contributions to research and academia. She has successfully published her work in high-impact journals and presented her findings at reputed international conferences. Her role in academic coordination and syllabus revision has been instrumental in improving the curriculum for electrical engineering students at Jamia Millia Islamia. Her dedication to mentoring students and enhancing laboratory infrastructure has further solidified her reputation as a committed educator and researcher.

Publications

Nasim, F., Khatoon, S., Ibraheem, Urooj, S., Shahid, M., Ali, A., & Nasser, N. (2025). Hybrid ANFIS-PI-Based Optimization for Improved Power Conversion in DFIG Wind Turbine. Sustainability, 17(6), 2454. https://doi.org/10.3390/su17062454 (SCI)

Nasim, F., Khatoon, S., Shahid, M., Baranwal, S., & Ahmad Wani, S. (2024). Ziegler-Nichols Based Controller Optimization for DFIG Wind Turbines. Tuijin Jishu/Journal of Propulsion Technology, 45(2). https://doi.org/10.52783/tjjpt.v45.i02.6966 (SCOPUS)

Nasim, F., et al. (2022). Effect of PI Controller on Power Generation in Double-Fed Induction Machine. 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), IEEE. doi: 10.1109/ICAC3N56670.2022.10074573.

Nasim, F., et al. (2024). Implementation of Crowbar Protection in DFIG. Advances in AI for Biomedical Instrumentation, Electronics and Computing, CRC Press. (Taylor and Francis Conference)

Nasim, F., et al. (2023). Field Control Grid Connected DFIG Turbine System. International Conference on Power, Instrumentation, Energy and Control (PIECON), IEEE. doi: 10.1109/PIECON56912.2023.10085726.

Conclusion

Ms. Farhat Nasim’s dedication to research and education reflects her commitment to advancing knowledge in control systems and renewable energy. Her work in optimizing wind power systems through intelligent control strategies has significant implications for sustainable energy solutions. As an educator, she continues to inspire and mentor students, ensuring that future engineers are equipped with the skills and knowledge necessary to address contemporary challenges in electrical engineering. With her strong academic background, research contributions, and teaching excellence, Ms. Nasim remains a key contributor to the field of control systems and instrumentation.

Balaji Dhamodharan | AI Expert | Lifetime achievement Award

Mr Balaji Dhamodharan | AI Expert | Lifetime achievement Award

Global Data Science Leader at  NXP Semiconductors,  United States

Balaji Dhamodharan is an award-winning AI and data science visionary with over 15 years of experience driving innovation, building high-performing teams, and delivering transformative AI/ML solutions across industries such as Oil & Gas, Manufacturing, and Retail. Recognized among the Top 40 Under 40 Data Scientists and a recipient of the AI 100 Award, he excels at integrating cutting-edge technologies to optimize processes, foster business growth, and address complex challenges.

Profile:

Leadership & Impact:

  • Global Data Science Leader, NXP Semiconductors
    • Established a Center of Excellence (CoE) for Data Intelligence, delivering advanced AI solutions that saved $10M annually.
    • Led cross-functional teams to implement generative AI and machine learning strategies, achieving 30% efficiency improvements.
    • Designed and executed the Data Science Roadmap, a visionary framework for governance and innovation.
  • Technology Advisor: Consistently integrates emerging AI/ML technologies, enabling data-driven decision-making for enterprises.
  • Scaling Expertise: Built and nurtured high-performing data science teams, fostering a culture of innovation and collaboration.

Key Technical Skills:

  • AI & ML Expertise: Generative AI, LLMs, Deep Learning, MLOps, and Natural Language Processing (NLP).
  • Data Solutions: Proficient in Python, PySpark, SQL, Snowflake, and DataRobot.
  • Visualization & Cloud: Tableau, Power BI, AWS, Azure, and Databricks.

Professional Timeline:

  • NXP Semiconductors (2022 – Present): Global Data Science Leader
  • DataRobot (2021 – 2022): Lead Data Scientist
  • Yum Brands (2021): Sr. Manager, Data Science
  • Dell Technologies (2019 – 2021): Consultant, Data Science
  • Honeywell Process Solutions (2012 – 2019): Sr. Data Scientist

Accomplishments:

  • Co-inventor of a patent-pending NLP-based contract analysis algorithm.
  • Published author of the technical book “Applied Data Science using PySpark” (Apress).
  • Editorial Board Member for leading AI journals.
  • Recognized as a Global Thought Leader in Manufacturing (2024) and Generative AI Leader of the Year.
  • Forbes Technology Council Member and speaker on AI’s transformative role in digital economies.

Thought Leadership & Advocacy

  • Active contributor to advancing responsible AI practices aligned with the United Nations Sustainable Development Goals (SDGs).
  • Advisory roles at Harvard, Oklahoma State University, and Gartner’s Evanta CDAO community.
  • Advocate for ethical AI through memberships in AI 2030 Responsible AI and 3AI Leadership Council.

Publication Top Notes:

  1. Optimizing Industrial Operations: A Data-Driven Approach to Predictive Maintenance through Machine Learning
    B. Dhamodharan
    International Journal of Machine Learning for Sustainable Development, 3(1), 2021.
  2. Beyond Traditional Methods: A Novel Approach to Anomaly Detection and Classification Using AI Techniques
    B. Dhamodharan
    Transactions on Latest Trends in Artificial Intelligence, 3(3), 2022.
  3. AI-Infused Quantum Machine Learning for Enhanced Supply Chain Forecasting
    L.M. Gutta, B. Dhamodharan, P.K. Dutta, P. Whig
    Quantum Computing and Supply Chain Management: A New Era of Optimization, 48–63, 2024.
  4. Empowering Enterprise Intelligence: The Transformative Influence of AutoML and Feature Engineering
    B. Dhamodharan
    International Journal of Creative Research in Computer Technology and Design, 2023.
  5. Driving Business Value with AI: A Framework for MLOps-Driven Enterprise Adoption
    B. Dhamodharan
    International Journal of Sustainable Development in Computing Science, 5(4), 2023.
  6. Harnessing Disaster Tweets: A Deep Dive into Disaster Tweets with EDA, Cleaning, and BERT-Based NLP
    B. Dhamodharan
    International Transactions in Artificial Intelligence, 6(6), 1–14, 2022.
  7. Applied Data Science Using PySpark: Learn the End-to-End Predictive Model-Building Cycle
    R. Kakarla, S. Krishnan, V. Gunnu, B. Dhamodharan
    Apress, 2024.
  8. Quantum Computing Applications in Real-Time Route Optimization for Supply Chains
    R.K. Vaddy, B. Dhamodharan, A. Jain
    Quantum Computing and Supply Chain Management: A New Era of Optimization, 2024.
  9. Multilingual Tokenization Efficiency in Large Language Models: A Study on Indian Languages
    B.D. Mohamed Azharudeen M
    Lattice – The Machine Learning Journal, 5(2), 2024.