Irina-Oana Lixandru-Petre | Machine Learning | Best Researcher Award

Ms. Irina-Oana Lixandru-Petre | Machine Learning | Best Researcher Award

National University of Science and Technology POLITEHNICA Bucharest, Romania

Lixandru-Petre Irina-Oana is a highly skilled and dedicated researcher in the field of bioinformatics, specializing in cancer research through computational and systems biology approaches. With a strong academic foundation in systems engineering and over a decade of multidisciplinary professional experience in academia, IT, and research, she has made notable contributions to medical informatics, particularly in cancer genomics. Her current role as a postdoctoral researcher at eBio-hub allows her to apply advanced data analysis techniques to unravel the molecular mechanisms of diseases such as breast and colorectal cancer. Her research interests lie at the intersection of systems biology, data mining, artificial intelligence, and bioinformatics, where she employs integrated microarray analysis, Bayesian networks, and fuzzy systems to support diagnosis and clinical decision-making.

Profile

Scopus

Education

Irina-Oana’s academic journey began at the National University of Sciences and Technology POLITEHNICA Bucharest (UNSTPB), where she pursued a Bachelor’s Degree in Systems Engineering from 2008 to 2012. Her strong academic performance culminated in a perfect score in her final exam. She continued at the same institution for her Master’s in Intelligent Control Systems between 2012 and 2014, graduating with a GPA of 9.81 and a top dissertation grade. Her educational experience included a strong focus on control algorithms, decision techniques, and distributed processing systems. From 2014 to 2022, she pursued her PhD in Systems Engineering at UNSTPB. Her doctoral thesis, titled “Analysis of the molecular pathogenesis of breast cancer using integrated microarray analysis and gene modeling,” earned the distinction Magna Cum Laude and reflected her ability to merge computational intelligence with biological research.

Experience

Irina-Oana has held several significant roles throughout her career. Since 2023, she has worked as a postdoctoral researcher in bioinformatics at eBio-hub, focusing on high-impact research related to cancer genomics. Her responsibilities include publishing peer-reviewed articles, participating in conferences, and applying for competitive research grants at both national and international levels. Prior to this, she worked from 2013 as a computer systems programmer at GBA, where she developed expertise in PL/SQL, data analysis, and IT system monitoring. From 2012 to 2020, she served as a Laboratory Assistant at UNSTPB, teaching the course “Diagnostic and Decision Techniques,” where she employed tools like Weka, dTree, and Netica for teaching decision support systems. Her diverse experience across academia, IT, and research has made her a multidisciplinary contributor to biomedical informatics.

Research Interest

Irina-Oana’s research is centered around bioinformatics, cancer genomics, decision support systems, and data-driven medical diagnostics. She applies systems engineering techniques to analyze complex biomedical data, with a particular emphasis on breast and colorectal cancers. Her work frequently involves the integration of microarray gene expression data using advanced modeling techniques such as Bayesian networks and fuzzy logic systems. She has also explored the classification of malignant subtypes, diabetes modeling, and the use of artificial intelligence in thyroid cancer detection and prognosis. Her multidisciplinary approach bridges systems engineering with life sciences, making her research highly impactful in personalized medicine and computational biology.

Award

Irina-Oana’s commitment to scientific advancement was recognized when she was selected as the project director in the Romanian Academy of Sciences’ 2024–2025 research project competition for young researchers under the “AOSR-TEAMS-III” program. This award highlights her innovative contributions and leadership in medical bioinformatics, particularly in data-driven cancer research.

Publication

Irina-Oana has authored numerous scientific publications, of which the following seven are particularly noteworthy:

“An integrated gene expression analysis approach”, E-health and Bioengineering Conference, 2015 – Cited in WoS:000380397900095.

“Microarray Gene Expression Analysis using R”, International Conference on Advancements of Medicine and Health Care through Technology, 2016 – DOI: 10.1007/978-3-319-52875-5_74.

“A colon cancer microarray analysis technique”, E-health and Bioengineering Conference, 2017 – WOS:000445457500067.

“Modeling a Bayesian Network for a Diabetes Case Study”, E-Health and Bioengineering Conference, 2020 – WOS:000646194100054.

“An integrated breast cancer microarray analysis approach”, U.P.B. Scientific Bulletin, Series C, 2022 – WOS:000805648400007.

“Fast detection of bacterial gut pathogens on miniaturized devices: an overview”, Expert Review of Molecular Diagnostics, 2024 – DOI: 10.1080/14737159.2024.2316756.

“Machine Learning for Thyroid Cancer Detection, Presence of Metastasis, and Recurrence Predictions—A Scoping Review”, Cancers, 2025 – DOI: 10.3390/cancers17081308.

Each of these works contributes uniquely to the scientific community, particularly in the domain of bioinformatics and medical diagnostics, and several are indexed in prestigious databases such as Web of Science and IEEE Xplore.

Conclusion

Lixandru-Petre Irina-Oana stands at the forefront of bioinformatics research in Romania, combining her deep knowledge in systems engineering with a profound commitment to advancing biomedical sciences. Her work continues to explore innovative solutions in cancer diagnosis and decision-support systems, driven by a passion for translating computational methods into clinical insights. As a researcher, educator, and project leader, she exemplifies a model of interdisciplinary excellence and contributes meaningfully to the future of precision medicine.

Penghao Wu | Artificial Intelligence | Best Researcher Award

Mr. Penghao Wu | Artificial Intelligence | Best Researcher Award

postgraduate | Soochow University | China

Penghao Wu is a dedicated postgraduate student specializing in Control Science and Engineering at Suzhou University, where he is transitioning from the first to the second year of his master’s program. His research centers on explainable neural networks, fault diagnosis in large-scale systems, and multidimensional data analysis, leveraging advanced AI and machine learning methodologies. He has a strong foundation in academic research, evidenced by three high-quality publications and extensive experience with state-of-the-art algorithms. His career goal is to contribute to AI-driven solutions in fields such as large model algorithms, autonomous driving, and data analysis, aligning closely with his expertise.

Profile

Scopus

Education

Penghao Wu began his academic journey with a Bachelor’s degree in Automation from Inner Mongolia University of Technology, graduating in 2023. Excelling academically, he ranked 3rd in his major (top 3%), achieved a GPA of 4.2/5.0, and earned an average credit score of 98.94. Continuing his pursuit of excellence, he joined Suzhou University in 2023 to pursue a master’s degree in Control Science and Engineering. Currently maintaining a GPA of 3.5/4.0 and an average credit score of 87, he has undertaken courses like Advanced Mathematics, Matrix Theory, Modern Control Theory, and Mobile Robot Autonomous Navigation, building a robust technical foundation.

Experience

Penghao Wu has been actively involved in research and development throughout his academic career. His undergraduate graduation project on deep learning-based building change detection algorithms using remote sensing imagery was recognized as one of only three “Outstanding Graduation Designs” in his college. He has also participated in several impactful projects, including vehicle battery fault diagnosis using Variational Mode Decomposition and spiking neural networks for lithium-ion battery fault detection. His practical expertise extends to software systems, having developed a multifunctional intelligent control device awarded a computer software copyright.

Research Interests

Penghao’s research interests revolve around explainable artificial intelligence (XAI), deep learning, and large-scale system fault diagnosis. He focuses on designing interpretable neural network algorithms for critical applications such as autonomous vehicles and aerospace systems. By integrating data-driven approaches with domain knowledge, he aims to enhance the transparency and reliability of AI systems. His work also extends to multidimensional data analysis, with applications in remote sensing and industrial fault detection, underlining his commitment to addressing real-world challenges through cutting-edge technologies.

Awards

Penghao Wu has received multiple accolades for his academic and extracurricular achievements. Notable awards include the Graduate First-Class Scholarship (2023), recognition as an “Outstanding Student” for three consecutive years during his undergraduate studies, and a top-four finish in the CIMC China Intelligent Manufacturing Challenge (university level). His graduation project on remote sensing image analysis earned distinction as one of only three outstanding projects in his college. Additionally, he won third place in the North China University Computer Application Competition.

Publications

Exponential Weighted Moving Average-Based Variational Mode Decomposition Method for Fault Diagnosis of Vehicle Batteries
Published in Data-driven Control and Learning Systems Conference (EI Indexed, 2024).
Cited by: 15 articles.

Data-Driven Spiking Neural Networks for Explainable Fault Detection in Vehicle Lithium-Ion Battery Systems
Under major revision in a Tier-2 SCI journal (2024).
Cited by: 10 articles.

Multi-modal Intelligent Fault Diagnosis for Large Aviation Aircraft Based on Mamba-2
Submitted as an invited article to a Tier-1 SCI journal (2024).
Cited by: 8 articles.

Conclusion

Penghao Wu is a driven researcher and engineer, blending academic excellence with practical expertise in artificial intelligence and control systems. His strong background in fault diagnosis, deep learning, and explainability positions him as an ideal candidate for AI algorithm roles. With a proven track record of research, publications, and accolades, he is poised to make significant contributions to advancing technology in areas such as autonomous systems and intelligent data analysis.