Mahendra Gaikwad | Machine Learning | Best Researcher Award

Dr. Mahendra Gaikwad | Machine Learning | Best Researcher Award

Assistant Professor at Veermata Jijabai Technological Institute (VJTI) | Mumbai | India

Dr. Mahendra Uttam Gaikwad is a forward-thinking mechanical and manufacturing engineering professional whose work reflects a deep commitment to advancing modern machining, smart materials research, sustainable manufacturing, and AI-driven optimization in industrial systems. Renowned for his ability to bridge theoretical innovation with practical engineering applications, he has built a strong scholarly footprint through impactful publications in SCI and Scopus-indexed journals, contributions to influential book chapters, and editorial leadership in notable international volumes focused on advanced materials and digital-age manufacturing. His research explores critical themes such as electrical discharge machining, surface integrity analysis, optimization algorithms, additive manufacturing, fatigue modelling, and machine learning applications in production environments, consistently demonstrating an aptitude for tackling complex engineering challenges through empirical investigation and computational modelling. In addition to his academic contributions, he has shown commendable innovation through multiple national and international patents addressing smart systems, sustainable material utilization, and intelligent manufacturing solutions. He has also been an active collaborator with academic institutions, research groups, and industry partners, contributing to advancements in machining automation, performance benchmarking, and data-driven design methodologies. A dedicated mentor, he has guided numerous undergraduate and postgraduate research projects, fostering a research-oriented learning environment and supporting the next generation of engineers. His work as a reviewer, conference contributor, and knowledge disseminator further underscores his commitment to strengthening global engineering discourse. Known for his leadership qualities, professional integrity, and continuous pursuit of technological excellence, Dr. Gaikwad has earned recognition for his contributions to teaching and research, positioning himself as a noteworthy contributor to the evolving landscape of smart and sustainable manufacturing.

Profiles: ORCID | Google Scholar

Featured Publications

Gaikwad, M. U., Somatkar, A. A., Ghadge, M., Majumder, H., Shinde, A. M., & Lohakare, A. V. (2025). Effect of dry and wet machining environments on surface quality of Al6061 using particle swarm optimization (PSO).

Sargar, T., Gautam, N. K., Jadhav, A., & Gaikwad, M. U. (2025). A comparative investigation of kerf width during CO₂ and fiber laser machining of SS 316L material.

Khan, M. A. J., Pohekar, S. D., Bagade, P. M., Gaikwad, M. U., & Singh, M. (2025). CFD analysis of NACA 4415 marine propeller ducts for managing flow separation.

Nishandar, S. V., Pise, A. T., Bagade, P. M., Gaikwad, M. U., & Singh, A. (2025). Computational modelling and analysis of heat transfer enhancement in straight circular pipe with pulsating flow.

Gaikwad, M. U., Gaikwad, P. U., Ambhore, N., Sharma, A., & Bhosale, S. S. (2025). Powder bed additive manufacturing using machine learning algorithms for multidisciplinary applications: A review and outlook.

Dr. Santosh Jagtap | AI and ML | Microsoft AI Award

Dr. Santosh Jagtap | AI and ML | Microsoft AI Award

Assistant Professor, Prof. Ramkrishna More Arts, Commerce & Science College, India

Dr. Santosh Jagtap, Assistant Professor at Prof. Ramkrishna More College (Autonomous), is a highly accomplished researcher and academic in the fields of Artificial Intelligence (AI) and Cybersecurity, with extensive expertise in applying AI to smart agriculture, healthcare security, IoT-enabled educational systems, and AI-driven safety solutions. Dr. Jagtap holds advanced academic qualifications and has developed a distinguished research profile that emphasizes practical applications of emerging technologies to address societal challenges. His work integrates machine learning, blockchain, IoT, and real-time data processing, producing innovative solutions in areas such as intelligent irrigation systems, plant disease detection, AI-based emotion recognition for safety alerts, and secure healthcare frameworks. Over his career, Dr. Jagtap has contributed significantly to international research projects and collaborative studies, producing high-impact publications in reputed journals and conference proceedings, such as Materials Today: Proceedings, international conferences on electronics, computing, and applied AI. He has also been recognized for innovation through patent awards, notably for AI-based plant disease identification systems, reflecting his focus on technology transfer and real-world impact. Dr. Jagtap has played an active role in mentoring students, guiding research projects, and participating in professional networks that foster academic and technological growth. He has demonstrated a consistent record of research excellence, with a total of 78 citations across 4 Scopus-indexed publications and an h-index of 3, reflecting the growing impact of his work.

Profile: GOOGLE SCHOLAR | SCOPUS

Featured Publications

  • Jagtap, S. T., Phasinam, K., Kassanu. (2022). Towards application of various machine learning techniques in agriculture. Materials Today: Proceedings, 51, 793–797. 70 citations.

  • Jagtap, S. T., Thakar, (2021). A framework for secure healthcare system using blockchain and smart contracts. Second International Conference on Electronics and Sustainable Technologies. 22 citations.

  • Jagtap, S. T., Jagdale, K. C., & Thakar, C. M. (2023). Identification of plant disease device using artificial intelligence. IN Patent 391523-001. –

  • Pratiksha Bhise, D. S. J., & Jagtap, S. T. (2024). AI-driven emergency response system for women’s safety using real-time location and heart rate monitoring. IJRPR. –

  • Keskar,  A., Jagtap, S. T., et al. (2021). Big data preprocessing frameworks: Tools and techniques. Design Engineering, 1738–1746.

Dr. Pankaj Kumar | Machine learning | Best Researcher Award

Dr. Pankaj Kumar | Machine learning | Best Researcher Award

Assistant Professor, National Institute of Technology, Hamirpur

Dr. Pankaj Kumar is a researcher specializing in operations research, optimization methods in finance, interval optimization, machine learning and crop area planning. He earned a Ph.D. in Optimization Methods in Finance from the Indian Institute of Technology Kharagpur with his thesis on interval optimization methods for portfolio selection, and holds earlier advanced degrees in operations research and mathematics. Dr. Pankaj Kumar has served in research and teaching roles—most recently as Assistant Professor—focusing on modelling of portfolio optimization, multi-objective programming, time-series forecasting, and risk measures such as mean-VaR. His professional experience includes supervising research students, contributing to international and national collaborative projects, participating in workshops and conferences, and Dr. Pankaj Kumar’s scholarly output includes more than thirty peer-reviewed papers published in high-impact journals indexed by SCIE, Scopus, and Web of Science, and his work has attracted more than 360 citations with an h-index of 10, reflecting consistent academic influence. His research skills include mathematical modelling, statistical methods, algorithm design, programming in C and R, use of optimisation tools and applying machine learning regression techniques in finance contexts. Among his awards and honors are travel grants, junior/senior research fellowships, editorial board membership, and recognition for teaching and research excellence at his institution. In conclusion, Dr. Pankaj Kumar is positioned to further impact the fields of financial optimization and decision science through high-quality publications, interdisciplinary collaborations, and mentoring, likely to increase his citation profile, visibility, and leadership in both academic and applied settings.

Profile: GOOGLE SCHOLAR | SCOPUS | ORCID

Featured Publications

Behera, J., & Kumar, P. (2025). An approach to portfolio optimization with time series forecasting algorithms and machine learning techniques. Applied Soft Computing, 170, 112741.

Sahu, B. R. B., & Kumar, P. (2025). Portfolio rebalancing model utilizing support vector machine for optimal asset allocation. Arabian Journal for Science and Engineering, 50(14), 10939–10965.

Sahu, B. R. B., Bhurjee, A. K., & Kumar, P. (2024). Efficient solutions for vector optimization problem on an extended interval vector space and its application to portfolio optimization. Expert Systems with Applications, 249, 123653.

Behera, J., & Kumar, P. (2024). Implementation of machine learning-based sparse Sharpe ratio portfolio optimization: A case study on Indian stock market. Operational Research, 24(4), 62.

Patel, M., Behera, J., & Kumar, P. (2024). Parametric approach for multi-objective enhanced interval linear fractional programming problem. Engineering Optimization, 56(5), 740–765.

Ali Mehrizi | Machine Learning | Best Paper Award

Dr. Ali Mehrizi | Machine Learning | Best Paper Award

Lecturer at Ferdowsi University of Mashhad, Iran.

Ali Mehrizi is a distinguished researcher and lecturer in Artificial Intelligence (AI) and Machine Learning at Ferdowsi University of Mashhad (FUM), Iran. With a wealth of experience exceeding a decade, his expertise spans adaptive probabilistic models, distributed learning, multi-target tracking, time series forecasting, and Gaussian Mixture Probability Hypothesis Density (GMPHD) methods. Dr. Mehrizi has published multiple impactful articles in renowned journals such as Expert Systems with Applications and Fuzzy Sets and Systems. He is deeply committed to advancing the understanding and application of AI techniques and has successfully mentored numerous students in areas ranging from Data Mining to Advanced Operating Systems.

Profile

Google Scholar

Education

Dr. Mehrizi educational background is rooted in Artificial Intelligence. He is currently pursuing a Ph.D. in AI at Ferdowsi University of Mashhad (2017–2024), under the supervision of Professor H. Sadoghi Yazdi. His dissertation focuses on financial time series forecasting using experience-based adaptive learning, a project that has already produced several publications in top-tier journals. Previously, he earned an M.Sc. in AI from Azad University of Mashhad (2011–2013), where he worked on adaptive semi-supervised learning, optimizing self-organizing map models. His early academic journey began with a B.Sc. in Computer Engineering from the University of Birjand, later transferring to Azad University of Mashhad.

Experience

Dr. Mehrizi professional career spans various roles, beginning in 2001 when he became the IT & Network Manager at the Faculty of Engineering. In this capacity, he significantly improved the system performance and network management. Since 2011, he has been involved in research in AI and Machine Learning, contributing to the development of machine learning models and publishing his findings in high-impact journals. He has also served as a lecturer since 2013, teaching a variety of undergraduate and graduate courses, including Data Mining, Operating Systems, and Advanced Operating Systems. As a researcher, he has mentored students in their theses, particularly in machine learning and pattern recognition, fostering the next generation of AI experts.

Research Interests

Dr. Mehrizi  research interests are broad, focusing on several key areas within the domain of AI. His work on distributed adaptive learning, particularly through Diffusion LMS and Diffusion RLS, aims to optimize decentralized data processing for dynamic systems. In addition, he has contributed to probabilistic and hypothesis-based learning, exploring the use of Gaussian Mixture Probability Hypothesis Density (GMPHD) models for uncertainty-based learning and tracking. His research also delves into time series analysis and forecasting, with a particular focus on financial markets. Dr. Mehrizi’s interest in multi-target tracking extends to real-time tracking algorithms, emphasizing performance in noisy and incomplete data environments. He is also committed to semi-supervised learning, exploring hybrid methods that bridge supervised and unsupervised learning approaches in scenarios with limited labeled data.

Awards

Dr. Mehrizi contributions to the fields of AI and machine learning have earned him recognition in various academic and professional circles. He has been nominated for multiple awards for his research, particularly in adaptive learning and time series forecasting. His work is highly regarded in the academic community, and he continues to push the boundaries of AI research, especially in the areas of distributed learning and multi-target tracking.

Publications

Dr. Mehrizi has authored several articles in well-respected journals in AI and machine learning. His key publications include:

Mehrizi, A., & Yazdi, H. S. (2019). “Adaptive probabilistic methods for long-term financial time series forecasting.” Expert Systems with Applications.

Mehrizi, A., & Yazdi, H. S. (2020). “Semi-supervised learning using GSOM for adaptive classification.” Fuzzy Sets and Systems.

Mehrizi, A. (2022). “Distributed adaptive learning for dynamic systems using Diffusion LMS and RLS.” Emerging Markets Finance and Trade.

Mehrizi, A., & Yazdi, H. S. (2021). “Gaussian Mixture Probability Hypothesis Density for multi-target tracking.” Journal of Machine Learning Research.

These publications have been cited extensively by various researchers in the fields of machine learning, AI, and financial forecasting, underscoring Dr. Mehrizi’s significant impact on the academic community.

Conclusion

Dr. Ali Mehrizi is a leading researcher and educator in the field of Artificial Intelligence and Machine Learning, with a deep commitment to advancing these fields through his innovative research. His extensive academic background and his practical experience in both teaching and real-world applications have made him an invaluable asset to Ferdowsi University of Mashhad. With a strong focus on adaptive learning, probabilistic models, and time series forecasting, Dr. Mehrizi continues to contribute to the evolution of AI. His work not only shapes academic research but also provides vital insights into practical AI solutions for industries like finance and engineering. As a mentor and educator, he remains dedicated to shaping the future of AI professionals and researchers.

Mohsen Saroughi | Machine Learning | Best Scholar Award

Mr. Mohsen Saroughi | Machine Learning | Best Scholar Award

Researcher | university of tehran | Iran

Mohsen Saroughi is an accomplished water resource management professional with a passion for research and innovation. With expertise in machine learning, groundwater modeling, and hydrology, Mohsen has established himself as a leading figure in applying artificial intelligence and optimization techniques to water resource challenges.

Profile

Google scholar

Education 🎓

  • Master’s in Water Resource Management (2018–2021): University of Tehran, Tehran, Iran (CGPA: 3.5/4)
  • Bachelor’s in Water Engineering (2014–2018): University of Bu-Ali Sina, Hamedan, Iran (CGPA: 3.1/4)

Experience 💼

Mohsen has served as a teaching assistant and research mentor, guiding students on projects in hydrology and groundwater management. His professional experience includes roles as a language editor, GIS consultant, and intern, where he demonstrated expertise in modeling, remote sensing, and IT solutions.

Research Interests 🔬

Mohsen’s research spans groundwater management, machine learning, climate change, and systems dynamics. He excels in applying artificial intelligence to water resource optimization and hydrological modeling.

Publications 📚

“A novel hybrid algorithms for groundwater level prediction”

  • Authors: M Saroughi, E Mirzania, DK Vishwakarma, S Nivesh, KC Panda, …
  • Journal: Iranian Journal of Science and Technology, Transactions of Civil Engineering
  • Year: 2023
  • Citations: 31

“Hybrid COOT-ANN: a novel optimization algorithm for prediction of daily crop reference evapotranspiration in Australia”

  • Authors: E Mirzania, MH Kashani, G Golmohammadi, OR Ibrahim, M Saroughi
  • Journal: Theoretical and Applied Climatology 154 (1), 201-218
  • Year: 2023
  • Citations: 7

“Shannon entropy of performance metrics to choose the best novel hybrid algorithm to predict groundwater level (case study: Tabriz plain, Iran)”

  • Authors: M Saroughi, E Mirzania, M Achite, OM Katipoğlu, M Ehteram
  • Journal: Environmental Monitoring and Assessment 196 (3), 227
  • Year: 2024
  • Citations: 5

“Prediction of monthly groundwater level using a new hybrid intelligent approach in the Tabriz plain, Iran”

  • Authors: E Mirzania, M Achite, N Elshaboury, OM Katipoğlu, M Saroughi
  • Journal: Neural Computing and Applications, 1-16
  • Year: 2024
  • Citations: 1

“Evaluate effect of 126 pre-processing methods on various artificial intelligence models accuracy versus normal mode to predict groundwater level (case study: Hamedan-Bahar …”

  • Authors: M Saroughi, E Mirzania, M Achite, OM Katipoğlu, N Al-Ansari, …
  • Journal: Heliyon 10 (7)
  • Year: 2024
  • Citations: 0

Awards 🏆

  • Ranked 1% in Official Judicial Experts Water Exam (2024)
  • 6th in Iranian University Entrance Master Exam (2018)
  • 2nd in Provincial Chemistry Competition (2012)

Conclusion 🌍

Mohsen Saroughi is a highly competent and accomplished researcher with strengths in advanced modeling, machine learning applications, and groundwater management. His technical expertise, leadership in mentoring students, and significant contributions to both academic literature and practical tools position him as a strong candidate for the Best Researcher Award. To further enhance his impact, expanding his international collaborations and engaging in projects that directly affect societal challenges could bolster his already impressive academic and professional trajectory.