Mahendra Gaikwad | Machine Learning | Best Researcher Award

Dr. Mahendra Gaikwad | Machine Learning | Best Researcher Award

Assistant Professor at Veermata Jijabai Technological Institute (VJTI) | Mumbai | India

Dr. Mahendra Uttam Gaikwad is a forward-thinking mechanical and manufacturing engineering professional whose work reflects a deep commitment to advancing modern machining, smart materials research, sustainable manufacturing, and AI-driven optimization in industrial systems. Renowned for his ability to bridge theoretical innovation with practical engineering applications, he has built a strong scholarly footprint through impactful publications in SCI and Scopus-indexed journals, contributions to influential book chapters, and editorial leadership in notable international volumes focused on advanced materials and digital-age manufacturing. His research explores critical themes such as electrical discharge machining, surface integrity analysis, optimization algorithms, additive manufacturing, fatigue modelling, and machine learning applications in production environments, consistently demonstrating an aptitude for tackling complex engineering challenges through empirical investigation and computational modelling. In addition to his academic contributions, he has shown commendable innovation through multiple national and international patents addressing smart systems, sustainable material utilization, and intelligent manufacturing solutions. He has also been an active collaborator with academic institutions, research groups, and industry partners, contributing to advancements in machining automation, performance benchmarking, and data-driven design methodologies. A dedicated mentor, he has guided numerous undergraduate and postgraduate research projects, fostering a research-oriented learning environment and supporting the next generation of engineers. His work as a reviewer, conference contributor, and knowledge disseminator further underscores his commitment to strengthening global engineering discourse. Known for his leadership qualities, professional integrity, and continuous pursuit of technological excellence, Dr. Gaikwad has earned recognition for his contributions to teaching and research, positioning himself as a noteworthy contributor to the evolving landscape of smart and sustainable manufacturing.

Profiles: ORCID | Google Scholar

Featured Publications

Gaikwad, M. U., Somatkar, A. A., Ghadge, M., Majumder, H., Shinde, A. M., & Lohakare, A. V. (2025). Effect of dry and wet machining environments on surface quality of Al6061 using particle swarm optimization (PSO).

Sargar, T., Gautam, N. K., Jadhav, A., & Gaikwad, M. U. (2025). A comparative investigation of kerf width during CO₂ and fiber laser machining of SS 316L material.

Khan, M. A. J., Pohekar, S. D., Bagade, P. M., Gaikwad, M. U., & Singh, M. (2025). CFD analysis of NACA 4415 marine propeller ducts for managing flow separation.

Nishandar, S. V., Pise, A. T., Bagade, P. M., Gaikwad, M. U., & Singh, A. (2025). Computational modelling and analysis of heat transfer enhancement in straight circular pipe with pulsating flow.

Gaikwad, M. U., Gaikwad, P. U., Ambhore, N., Sharma, A., & Bhosale, S. S. (2025). Powder bed additive manufacturing using machine learning algorithms for multidisciplinary applications: A review and outlook.

Sohong Dhar | Data Science | Analytics Excellence Award

Dr. Sohong Dhar | Data Science | Analytics Excellence Award

Data Scientist at Jadavpur University | India

Dr. Sohong Dhar is a distinguished Information Scientist whose career bridges the fields of data science, digital marketing, and business analytics with remarkable proficiency. He is recognized for his ability to transform complex data into actionable insights that drive innovation, efficiency, and strategic growth across diverse industries. With expertise spanning machine learning, artificial intelligence, cloud computing, and advanced statistical analysis, he demonstrates an exceptional command of both theoretical and applied aspects of data-driven problem-solving. His multidisciplinary academic foundation, strengthened through advanced studies in data science and information science, has empowered him to approach challenges with analytical precision and creative foresight. Sohong has made impactful contributions to research, data modeling, and algorithmic development, delivering intelligent systems that enhance operational performance and decision-making processes. His fluency in multiple languages, combined with an understanding of literature and information systems, reflects a rare synthesis of technical acumen and intellectual versatility. He has collaborated effectively in cross-functional environments, employing platforms such as Microsoft Azure, SQL, and GCP to implement scalable and efficient data solutions. Beyond his technical mastery, Sohong’s work reflects a strong commitment to continuous learning, innovation, and excellence in the evolving domain of information and data science. His professional journey stands as a testament to the integration of analytical rigor, technological depth, and strategic thinking, establishing him as a forward-thinking expert dedicated to advancing the digital transformation landscape through intelligent, evidence-based insights and data-led decision frameworks.

Profile: Scopus

Featured Publications

Melba Kani, R., Karimli Maharram, V., Dhar, S., Samisha, B., Rajendran, P., & Ahmed, S. A. (2025). Automating grading to enhance student feedback and efficiency in higher education with a hybrid ensemble learning model.

Deepti, Nalluri, M., Mupparaju, C. B., Rongali, A. S., Dhar, S., & Ajitha, P. (2023). Retracted: Analyzing the impact of deep learning approaches on real-time data analysis in machine learning.