Dr. Mahendra Gaikwad | Machine Learning | Best Researcher Award
Assistant Professor at Veermata Jijabai Technological Institute (VJTI) | Mumbai | India
Dr. Mahendra Uttam Gaikwad is a forward-thinking mechanical and manufacturing engineering professional whose work reflects a deep commitment to advancing modern machining, smart materials research, sustainable manufacturing, and AI-driven optimization in industrial systems. Renowned for his ability to bridge theoretical innovation with practical engineering applications, he has built a strong scholarly footprint through impactful publications in SCI and Scopus-indexed journals, contributions to influential book chapters, and editorial leadership in notable international volumes focused on advanced materials and digital-age manufacturing. His research explores critical themes such as electrical discharge machining, surface integrity analysis, optimization algorithms, additive manufacturing, fatigue modelling, and machine learning applications in production environments, consistently demonstrating an aptitude for tackling complex engineering challenges through empirical investigation and computational modelling. In addition to his academic contributions, he has shown commendable innovation through multiple national and international patents addressing smart systems, sustainable material utilization, and intelligent manufacturing solutions. He has also been an active collaborator with academic institutions, research groups, and industry partners, contributing to advancements in machining automation, performance benchmarking, and data-driven design methodologies. A dedicated mentor, he has guided numerous undergraduate and postgraduate research projects, fostering a research-oriented learning environment and supporting the next generation of engineers. His work as a reviewer, conference contributor, and knowledge disseminator further underscores his commitment to strengthening global engineering discourse. Known for his leadership qualities, professional integrity, and continuous pursuit of technological excellence, Dr. Gaikwad has earned recognition for his contributions to teaching and research, positioning himself as a noteworthy contributor to the evolving landscape of smart and sustainable manufacturing.
Profiles: ORCID | Google Scholar
Featured Publications
Gaikwad, M. U., Somatkar, A. A., Ghadge, M., Majumder, H., Shinde, A. M., & Lohakare, A. V. (2025). Effect of dry and wet machining environments on surface quality of Al6061 using particle swarm optimization (PSO).
Sargar, T., Gautam, N. K., Jadhav, A., & Gaikwad, M. U. (2025). A comparative investigation of kerf width during CO₂ and fiber laser machining of SS 316L material.
Khan, M. A. J., Pohekar, S. D., Bagade, P. M., Gaikwad, M. U., & Singh, M. (2025). CFD analysis of NACA 4415 marine propeller ducts for managing flow separation.
Nishandar, S. V., Pise, A. T., Bagade, P. M., Gaikwad, M. U., & Singh, A. (2025). Computational modelling and analysis of heat transfer enhancement in straight circular pipe with pulsating flow.
Gaikwad, M. U., Gaikwad, P. U., Ambhore, N., Sharma, A., & Bhosale, S. S. (2025). Powder bed additive manufacturing using machine learning algorithms for multidisciplinary applications: A review and outlook.