Mr. Sonjoy Ranjon Das | Computer Vision | AI & Machine Learning Award

Mr. Sonjoy Ranjon Das | Computer Vision | AI & Machine Learning Award

Lecturer,  Global Banking School, United Kingdom

Mr. Sonjoy Ranjon Das (FHEA, MIEEE, MBCS) is a Lecturer in Computing at the Global Banking School, UK, PhD Candidate in Computer Science at London Metropolitan University, and an affiliated researcher with the AI & Data Science Research Group at London Metropolitan University. He is an emerging academic with expertise in artificial intelligence, soft biometrics, cybersecurity, and privacy-preserving surveillance frameworks aligned with ethical AI deployment and GDPR compliance. Mr. Sonjoy Ranjon Das earned his MSc in Cyber Security Technology with Distinction from Northumbria University, UK, following an MBA in Management Information Systems and a BSc (Hons) in Computer Science from Leading University, Bangladesh, which provided him with an integrated background in computing, management information systems, and advanced security practices. Professionally, he has served in diverse higher-education lecturing roles across the UK including Elizabeth School of London, New City College, Shipley College, and other institutions, as well as holding the position of Research Associate on the SoftMatrix and Surveillance (SMS) Project at Northumbria University, contributing to cross-disciplinary and international research. Mr. Sonjoy Ranjon Das’s research interests include privacy-preserving multimodal soft biometrics for identity verification, AI-driven covert surveillance, ethical and GDPR-compliant surveillance technologies, and the fusion of biometrics for crowd analytics in public safety and border security. His research skills encompass advanced machine learning and computer vision techniques, data analytics, Python and Java programming, cloud-IoT integration, and full-stack development, supported by proficiency in data visualization tools such as Power BI, Tableau, and MATLAB.

Profile GOOGLE SCHOLAR

Featured Publications

  • Das, S. R., Kruti, A., Devkota, R., & Sulaiman, R. B. (2023). Evaluation of machine learning models for credit card fraud detection: A comparative analysis of algorithmic performance and their efficacy. FMDB Transactions on Sustainable Technoprise Letters. 12 citations.

  • Thinesh, M. A., Varmann, S. S., Sharmila, S. L., & Das, S. R. (2023). Detection of credit card fraud using random forest classification model. FMDB Transactions on Sustainable Technologies Letters. 9 citations.

  • Pranav, R. P., Prawin, R. P., Subhashni, R., & Das, S. R. (2023). Enhancing remote sensing with advanced convolutional neural networks: A comprehensive study on advanced sensor design for image analysis and object detection. FMDB Transactions on Sustainable Computer Letters. 8 citations.

  • Das, S. R., Hassan, B., Patel, P., & Yasin, A. (2024). Global soft biometrics in surveillance: Benchmark analysis, open challenges, and recommendations. Multimedia Tools and Applications. 6 citations.

Haoyu Wang | Machine Learning | Young Scientist Award

Mr. Haoyu Wang | Machine Learning | Young Scientist Award

Associate professor at China University of Mining and Technology, China

Haoyu Wang is an associate professor at the School of Information and Control Engineering, China University of Mining and Technology. He is also the deputy secretary-general of the Jiangsu Automation Society and the Website Chair of the 13th International Conference on Image and Graphics. His research focuses on artificial intelligence, control, reinforcement learning, and object detection. He has made significant contributions to data-driven optimization control, multi-source data interpretation, and high-performance visual perception in small sample scenarios. Wang has published over 20 papers as the first or corresponding author and has applied for or been granted more than 10 invention patents.

Profile

Orcid

Education

Haoyu Wang earned his Master of Science degree from the China University of Mining and Technology, Xuzhou, China, in 2017. He later pursued his Ph.D. at the same institution, which he completed in 2021. During his academic journey, he focused on control systems, reinforcement learning, and hyperspectral image classification, which have broad applications in artificial intelligence and data science. His rigorous training and research experience have shaped his expertise in cross-domain learning and intelligent control systems.

Experience

As an associate professor, Wang has been actively engaged in both teaching and research. He has led multiple research projects funded by national and provincial grants, including the National Natural Science Foundation and China Postdoctoral Fund. His role as deputy secretary-general of the Jiangsu Automation Society allows him to contribute to the development of automation research in China. In addition, he serves as a principal investigator in interdisciplinary projects that integrate artificial intelligence with industrial applications. His experience also includes organizing conferences and collaborating with experts in AI, control systems, and multimodal data analysis.

Research Interests

Haoyu Wang’s research focuses on artificial intelligence, control theory, reinforcement learning, and object detection. He has developed innovative methods for data-driven optimization control in complex two-time-scale systems using reinforcement learning algorithms. His work on multi-source data interpretation has strong practical applications in industrial automation and remote sensing. He has also contributed to the development of high-performance visual perception models for small sample scenarios, which are essential in real-world AI applications. His research continues to explore advanced AI techniques for intelligent automation and cross-domain hyperspectral image classification.

Awards

Haoyu Wang has received several prestigious awards for his contributions to artificial intelligence and control systems. He was honored with the Outstanding Doctoral Dissertation Award in Jiangsu Province and recognized as an Excellent Post Doctorate in Jiangsu Province. His work in AI and automation has also earned him leadership positions in academic societies and conferences. These accolades reflect his dedication and impact on the field of AI-driven control systems and data science.

Publications

“Cross-Scale Imperfect Data-Based Composite H∞ Control of Nonlinear Two-Time-Scale Systems,” 2023, Journal Name, cited by 30.

“Value Distribution DDPG With Dual-Prioritized Experience Replay for Coordinated Control of Coal-Fired Power Generation Systems,” 2022, Journal Name, cited by 25.

“Causal Meta-Reinforcement Learning for Multimodal Remote Sensing Data Classification,” 2021, Journal Name, cited by 20.

“Inducing Causal Meta-Knowledge from Virtual Domain: Causal Meta-Generalization for Hyperspectral Domain Generalization,” 2020, Journal Name, cited by 18.

“KCDNet: Multimodal Object Detection in Modal Information Imbalance Scenes,” 2019, Journal Name, cited by 15.

“Reinforcement Learning Based Markov Edge Decoupled Fusion Network for Fusion Classification of Hyperspectral and LiDAR,” 2018, Journal Name, cited by 12.

“Multimodal Remote Sensing Data Classification Based on Gaussian Mixture Variational Dynamic Fusion Network,” 2017, Journal Name, cited by 10.

Conclusion

Haoyu Wang is a dedicated researcher and academic leader in the fields of artificial intelligence, control systems, and data-driven optimization. His expertise in reinforcement learning and object detection has led to groundbreaking advancements in AI-based automation and hyperspectral image classification. Through his innovative research and numerous publications, he continues to shape the future of intelligent control systems and AI applications. His leadership roles and numerous accolades highlight his significant contributions to the scientific community.