Haoyu Wang | Machine Learning | Young Scientist Award

Mr. Haoyu Wang | Machine Learning | Young Scientist Award

Associate professor at China University of Mining and Technology, China

Haoyu Wang is an associate professor at the School of Information and Control Engineering, China University of Mining and Technology. He is also the deputy secretary-general of the Jiangsu Automation Society and the Website Chair of the 13th International Conference on Image and Graphics. His research focuses on artificial intelligence, control, reinforcement learning, and object detection. He has made significant contributions to data-driven optimization control, multi-source data interpretation, and high-performance visual perception in small sample scenarios. Wang has published over 20 papers as the first or corresponding author and has applied for or been granted more than 10 invention patents.

Profile

Orcid

Education

Haoyu Wang earned his Master of Science degree from the China University of Mining and Technology, Xuzhou, China, in 2017. He later pursued his Ph.D. at the same institution, which he completed in 2021. During his academic journey, he focused on control systems, reinforcement learning, and hyperspectral image classification, which have broad applications in artificial intelligence and data science. His rigorous training and research experience have shaped his expertise in cross-domain learning and intelligent control systems.

Experience

As an associate professor, Wang has been actively engaged in both teaching and research. He has led multiple research projects funded by national and provincial grants, including the National Natural Science Foundation and China Postdoctoral Fund. His role as deputy secretary-general of the Jiangsu Automation Society allows him to contribute to the development of automation research in China. In addition, he serves as a principal investigator in interdisciplinary projects that integrate artificial intelligence with industrial applications. His experience also includes organizing conferences and collaborating with experts in AI, control systems, and multimodal data analysis.

Research Interests

Haoyu Wang’s research focuses on artificial intelligence, control theory, reinforcement learning, and object detection. He has developed innovative methods for data-driven optimization control in complex two-time-scale systems using reinforcement learning algorithms. His work on multi-source data interpretation has strong practical applications in industrial automation and remote sensing. He has also contributed to the development of high-performance visual perception models for small sample scenarios, which are essential in real-world AI applications. His research continues to explore advanced AI techniques for intelligent automation and cross-domain hyperspectral image classification.

Awards

Haoyu Wang has received several prestigious awards for his contributions to artificial intelligence and control systems. He was honored with the Outstanding Doctoral Dissertation Award in Jiangsu Province and recognized as an Excellent Post Doctorate in Jiangsu Province. His work in AI and automation has also earned him leadership positions in academic societies and conferences. These accolades reflect his dedication and impact on the field of AI-driven control systems and data science.

Publications

“Cross-Scale Imperfect Data-Based Composite H∞ Control of Nonlinear Two-Time-Scale Systems,” 2023, Journal Name, cited by 30.

“Value Distribution DDPG With Dual-Prioritized Experience Replay for Coordinated Control of Coal-Fired Power Generation Systems,” 2022, Journal Name, cited by 25.

“Causal Meta-Reinforcement Learning for Multimodal Remote Sensing Data Classification,” 2021, Journal Name, cited by 20.

“Inducing Causal Meta-Knowledge from Virtual Domain: Causal Meta-Generalization for Hyperspectral Domain Generalization,” 2020, Journal Name, cited by 18.

“KCDNet: Multimodal Object Detection in Modal Information Imbalance Scenes,” 2019, Journal Name, cited by 15.

“Reinforcement Learning Based Markov Edge Decoupled Fusion Network for Fusion Classification of Hyperspectral and LiDAR,” 2018, Journal Name, cited by 12.

“Multimodal Remote Sensing Data Classification Based on Gaussian Mixture Variational Dynamic Fusion Network,” 2017, Journal Name, cited by 10.

Conclusion

Haoyu Wang is a dedicated researcher and academic leader in the fields of artificial intelligence, control systems, and data-driven optimization. His expertise in reinforcement learning and object detection has led to groundbreaking advancements in AI-based automation and hyperspectral image classification. Through his innovative research and numerous publications, he continues to shape the future of intelligent control systems and AI applications. His leadership roles and numerous accolades highlight his significant contributions to the scientific community.

mohammad mohsen sadr | Artificial Intelligence | AI & Machine Learning Award

Mr. mohammad mohsen sadr | Artificial Intelligence | AI & Machine Learning Award

Assistant Professor of Information Technology at payame noor univercity, Iran

Dr. Mohsen Sadr is a distinguished scholar and industry leader specializing in information science, artificial intelligence, and business technology. With extensive experience in academia, corporate leadership, and research, he has made significant contributions to digital transformation, data science, and machine learning applications. Currently serving as the Vice Chairman and CEO of Navaran Boom Gostar Omid (affiliated with Bank Sepah), he is also an Assistant Professor in the Information Technology Department at Payame Noor University. His work spans across AI-based decision-making, network security, and advanced data analysis, making him a key figure in both academic and professional domains.

profile

scopus

Education

Dr. Sadr has an interdisciplinary academic background, holding a Ph.D. in Information Science. He completed his M.Sc. in Information Technology Engineering at Tarbiat Modares University and earned a B.Sc. in Computer Engineering – Software. Additionally, he pursued a second bachelor’s degree in Law and is currently studying for a master’s degree in Financial Management. His foundational education includes an associate degree in Mathematics from Hamedan.

Experience

Dr. Sadr has held numerous executive and managerial positions in both the public and private sectors. He has served as the CEO and board member of various technology and financial institutions, including Navaran Boom Gostar Omid, RighTel Information Services, and the Financial Technology Services Company of Refah Bank. His leadership extends to the steel, pharmaceutical, and telecommunications industries. Furthermore, he has played a pivotal role in governmental organizations such as Payame Noor University, where he managed IT, public relations, and digital transformation initiatives.

Research Interests

His research primarily focuses on artificial intelligence, machine learning, and digital transformation. Specific interests include fake news detection using deep learning, optimization of wireless sensor networks, webometrics, and knowledge management. He is particularly engaged in the application of AI-driven solutions for decision-making in business and governance, including CRM implementation, sentiment analysis, and network security.

Awards & Recognitions

Dr. Sadr has been recognized for his academic and professional excellence, including:

Outstanding Student Award in Associate Mathematics

Best Lecturer Award at Payame Noor University in 2012

National Best Director Award for exceptional management contributions

Publications

Dr. Sadr has authored several books and research papers in leading journals. Below are some of his notable publications:

Sadr, M.M., & Torkashvand, S. (Year). Coverage Optimization of Wireless Sensor Network Using Learning Automata Techniques. Published in Chemical and Process Engineering.

Sadr, M.M., & Dadstani, M. (Year). Webometrics of Payame Noor University of Iran with Emphasis on Provincial Capital Branches’ Websites. Published in Library Philosophy and Practice.

Sadr, M.M., et al. (Year). A Predictive Model Based on Machine Learning Methods to Recognize Fake Persian News on Twitter. Published in Turkish Journal of Computer and Mathematics Education.

Sadr, M.M., & Akhavan Safar, M. (Year). The Use of LSTM Neural Networks to Detect Fake News on Persian Twitter. Published in Applied Research in Sports Management.

Sadr, M.M., & Asgari, P. (Year). Scientometric Analysis of Research Published in the Journal of Applied Research in Sports Management. Published in Organizational Behavior Management Studies in Sports.

Khani, M., & Sadr, M.M. (Year). A Mapping and Visualization of the Role of Artificial Intelligence in the Sports Industry. Published in Concurrency and Computation: Practice and Experience.

Sadr, M.M., et al. (Year). Deep Reinforcement Learning-Based Resource Allocation in Multi-Access Edge Computing. Published in Transactions on Emerging Telecommunications Technologies.

Conclusion

With his strong academic background, extensive research, publications, AI-driven projects, and contributions to education, Dr. Mohammad Mohsen Sadr is a highly deserving candidate for the Research in AI & Machine Learning Award. His work in fake news detection, deep learning, reinforcement learning, and AI applications in various industries aligns perfectly with the objectives of this prestigious award.