Jafar keighobadi | Automated Machine Learning (AutoML) | Best Researcher Award

Prof. Dr. Jafar keighobadi | Automated Machine Learning (AutoML) | Best Researcher Award

Professor at Tabriz university, Iran

Dr. Jafar Keighobadi is a distinguished professor in the Faculty of Mechanical Engineering at the University of Tabriz, Iran. With a career spanning over two decades, he has made significant contributions to the fields of mechatronics, control systems, signal processing, and artificial intelligence. His expertise extends to the programming and implementation of microcontroller and microprocessor boards, reflecting a profound integration of theoretical knowledge with practical applications. Throughout his tenure, Dr. Keighobadi has been instrumental in advancing research and education, mentoring numerous students, and collaborating on projects that bridge the gap between academia and industry.

Profile

Scopus

Education

Dr. Keighobadi’s academic journey commenced with a Bachelor of Science in Mechanical Engineering, specializing in Applied Design Mechanics, from the University of Tabriz. He furthered his studies at the Amirkabir University of Technology (Tehran Polytechnic), where he earned both his Master of Science and Ph.D. in Mechanical Engineering. His doctoral research focused on “Robust Estimator Design for Stochastic Attitude-Heading Reference System in Accelerated Maneuvers,” a comprehensive study that entailed the development and extensive testing of a low-cost Attitude-Heading Reference System. This academic foundation has been pivotal in shaping his research trajectory and teaching philosophy.

Experience

Dr. Keighobadi’s professional experience is marked by a progressive academic career at the University of Tabriz, where he has served as an Assistant Professor (2008–2013), Associate Professor (2014–2020), and has held the position of full Professor since 2020. In addition to his teaching and research responsibilities, he has been a Patent Examiner at the university since 2009, overseeing the evaluation of innovative technologies and inventions. His commitment to education is further demonstrated through his roles as a lecturer at various institutions, including the Islamic Azad University branches in Khoy, Qazvin, and Maragheh, as well as Zanjan University. These roles have enabled him to disseminate knowledge across a broad spectrum of students and professionals.

Research Interests

Dr. Keighobadi’s research interests are diverse and interdisciplinary, encompassing MEMS sensors and actuators, GNSS, control systems, and Kalman filtering. He has a profound interest in autonomous robots and the design and implementation of intelligent systems. His work delves into robust filtering and control, stochastic nonlinear estimation and control, and the mathematical algorithms of chaos. A significant portion of his research is dedicated to artificial intelligence, including fuzzy logic, artificial neural networks, and deep learning. Moreover, he is adept in FPGA, DSP, and ARM programming, which underscores his commitment to integrating advanced computational techniques with mechanical engineering applications.

Awards

Throughout his illustrious career, Dr. Keighobadi has been the recipient of several accolades that recognize his contributions to research and academia. Notably, he was honored as the Best Young Researcher across all technical departments at the University of Tabriz on November 27, 2011. This award reflects his dedication to advancing engineering knowledge and his impact on the academic community. Additionally, his academic excellence was evident early in his career when he secured the second rank out of 120 candidates in the Ph.D. entrance exam at Amirkabir University of Technology on June 18, 2001. These honors underscore his commitment to excellence and innovation in his field.

Publications

Dr. Keighobadi’s scholarly output includes numerous publications in esteemed journals. A selection of his notable works includes:

“Immersion and Invariance-Based Extended State Observer Design for a Class of Nonlinear Systems,” published in the International Journal of Robust and Nonlinear Control on May 21, 2021.

“Adaptive Neural Dynamic Surface Control of Mechanical Systems Using Integral Terminal Sliding Mode,” featured in Neurocomputing on December 21, 2019.

“Adaptive Inverse Deep Reinforcement Lyapunov Learning Control for a Floating Wind Turbine,” published in Scientia Iranica on January 15, 2023.

“Decentralized INS/GPS System with MEMS-Grade Inertial Sensors Using QR-Factorized CKF,” featured in the IEEE Sensors Journal on June 1, 2017.

“INS/GNSS Integration Using Recurrent Fuzzy Wavelet Neural Networks,” published in GPS Solutions on May 21, 2020.

“Passivity-Based Hierarchical Sliding Mode Control/Observer of Underactuated Mechanical Systems,” featured in the Journal of Vibration and Control on May 19, 2022.

“Extended State Observer-Based Robust Non-Linear Integral Dynamic Surface Control for Triaxial MEMS Gyroscope,” published in Robotica on January 15, 2019.

These publications highlight Dr. Keighobadi’s extensive research in control systems, artificial intelligence, and their applications in mechanical engineering.

Conclusion

Dr. Jafar Keighobadi stands as a prominent figure in mechanical engineering, with a career dedicated to advancing research, education, and practical applications in mechatronics and control systems. His interdisciplinary approach, combining robust theoretical frameworks with hands-on implementation, has significantly impacted both academic circles and industry practices. As a mentor, researcher, and educator, Dr. Keighobadi continues to inspire and lead in the ever-evolving landscape of engineering and technology.

Penghao Wu | Artificial Intelligence | Best Researcher Award

Mr. Penghao Wu | Artificial Intelligence | Best Researcher Award

postgraduate | Soochow University | China

Penghao Wu is a dedicated postgraduate student specializing in Control Science and Engineering at Suzhou University, where he is transitioning from the first to the second year of his master’s program. His research centers on explainable neural networks, fault diagnosis in large-scale systems, and multidimensional data analysis, leveraging advanced AI and machine learning methodologies. He has a strong foundation in academic research, evidenced by three high-quality publications and extensive experience with state-of-the-art algorithms. His career goal is to contribute to AI-driven solutions in fields such as large model algorithms, autonomous driving, and data analysis, aligning closely with his expertise.

Profile

Scopus

Education

Penghao Wu began his academic journey with a Bachelor’s degree in Automation from Inner Mongolia University of Technology, graduating in 2023. Excelling academically, he ranked 3rd in his major (top 3%), achieved a GPA of 4.2/5.0, and earned an average credit score of 98.94. Continuing his pursuit of excellence, he joined Suzhou University in 2023 to pursue a master’s degree in Control Science and Engineering. Currently maintaining a GPA of 3.5/4.0 and an average credit score of 87, he has undertaken courses like Advanced Mathematics, Matrix Theory, Modern Control Theory, and Mobile Robot Autonomous Navigation, building a robust technical foundation.

Experience

Penghao Wu has been actively involved in research and development throughout his academic career. His undergraduate graduation project on deep learning-based building change detection algorithms using remote sensing imagery was recognized as one of only three “Outstanding Graduation Designs” in his college. He has also participated in several impactful projects, including vehicle battery fault diagnosis using Variational Mode Decomposition and spiking neural networks for lithium-ion battery fault detection. His practical expertise extends to software systems, having developed a multifunctional intelligent control device awarded a computer software copyright.

Research Interests

Penghao’s research interests revolve around explainable artificial intelligence (XAI), deep learning, and large-scale system fault diagnosis. He focuses on designing interpretable neural network algorithms for critical applications such as autonomous vehicles and aerospace systems. By integrating data-driven approaches with domain knowledge, he aims to enhance the transparency and reliability of AI systems. His work also extends to multidimensional data analysis, with applications in remote sensing and industrial fault detection, underlining his commitment to addressing real-world challenges through cutting-edge technologies.

Awards

Penghao Wu has received multiple accolades for his academic and extracurricular achievements. Notable awards include the Graduate First-Class Scholarship (2023), recognition as an “Outstanding Student” for three consecutive years during his undergraduate studies, and a top-four finish in the CIMC China Intelligent Manufacturing Challenge (university level). His graduation project on remote sensing image analysis earned distinction as one of only three outstanding projects in his college. Additionally, he won third place in the North China University Computer Application Competition.

Publications

Exponential Weighted Moving Average-Based Variational Mode Decomposition Method for Fault Diagnosis of Vehicle Batteries
Published in Data-driven Control and Learning Systems Conference (EI Indexed, 2024).
Cited by: 15 articles.

Data-Driven Spiking Neural Networks for Explainable Fault Detection in Vehicle Lithium-Ion Battery Systems
Under major revision in a Tier-2 SCI journal (2024).
Cited by: 10 articles.

Multi-modal Intelligent Fault Diagnosis for Large Aviation Aircraft Based on Mamba-2
Submitted as an invited article to a Tier-1 SCI journal (2024).
Cited by: 8 articles.

Conclusion

Penghao Wu is a driven researcher and engineer, blending academic excellence with practical expertise in artificial intelligence and control systems. His strong background in fault diagnosis, deep learning, and explainability positions him as an ideal candidate for AI algorithm roles. With a proven track record of research, publications, and accolades, he is poised to make significant contributions to advancing technology in areas such as autonomous systems and intelligent data analysis.