Cuixia Dai | Deep Learning | Best Researcher Award

Prof. Cuixia Dai | Deep Learning | Best Researcher Award

Professor at Shanghai Institute of Technology, China

Cuixia Dai is a distinguished researcher in the field of optical engineering and biomedical imaging. She began her academic journey at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, focusing on photorefractive nonlinear optical dual-center nonvolatile holographic recording. She earned her Ph.D. in Optical Engineering in March 2006, receiving recognition as an Outstanding Doctoral Graduate of Shanghai. Following her doctorate, she pursued postdoctoral research at Shanghai University in Mechanical Engineering, emphasizing digital holography and spatial three-dimensional imaging. Since 2008, she has been a faculty member at the School of Science, Shanghai University of Applied Sciences, concentrating on biomedical optical imaging, with extensive studies in ophthalmic imaging and endoscopic structural and functional imaging. She has also undertaken research visits at leading U.S. institutions, strengthening scientific collaborations in biomedical photonic imaging.

Profile

Scopus

Education

Cuixia Dai completed her Ph.D. in Optical Engineering at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, in March 2006. Her research focused on photorefractive nonlinear optical dual-center nonvolatile holographic recording. Her outstanding academic performance earned her the title of Outstanding Doctoral Graduate of Shanghai. Following this, she expanded her expertise through a postdoctoral program at Shanghai University in Mechanical Engineering, where she explored digital holography and three-dimensional spatial imaging techniques. Her education also includes research training at renowned international institutions, such as the University of Southern California, the University of California, Berkeley, and the University of California, Irvine, where she engaged in biomedical photonic imaging research.

Experience

Cuixia Dai has extensive experience in the field of optical and biomedical imaging. She joined Shanghai University of Applied Sciences in September 2008 as a faculty member in the School of Science, dedicating her research efforts to biomedical optical imaging. She has conducted significant studies in ophthalmic imaging and endoscopic structural and functional imaging, contributing to advancements in medical diagnostics. Her international experience includes visiting scholar positions at the University of Southern California (2011–2013), where she deepened her knowledge in biomedical photonic imaging, and at the University of California, Berkeley, and the University of California, Irvine (2015), where she collaborated on scientific projects and established international research partnerships.

Research Interest

Cuixia Dai’s research interests encompass a wide range of topics in optical engineering and biomedical imaging. Her primary focus areas include digital holography, spatial three-dimensional imaging, and biomedical optical imaging techniques. She has conducted extensive studies on ophthalmic imaging, investigating novel methods for high-resolution visualization of ocular structures. Additionally, her work in endoscopic imaging has contributed to advancements in minimally invasive diagnostic procedures. Through her interdisciplinary research, she aims to enhance imaging technologies for biomedical applications, improving diagnostic accuracy and patient outcomes.

Awards

Throughout her academic career, Cuixia Dai has received several accolades recognizing her contributions to the field of optical engineering and biomedical imaging. Notably, she was honored as an Outstanding Doctoral Graduate of Shanghai in 2006 for her exceptional doctoral research. Her work has been acknowledged in academic and professional circles, leading to nominations for prestigious research awards. Her contributions to biomedical optical imaging have positioned her as a leading researcher in the field, with her work influencing advancements in medical imaging technologies.

Publications

Cuixia Dai has authored several influential publications in optical and biomedical imaging. Some of her notable works include:

Dai, C., et al. (2012). “High-resolution ophthalmic imaging using digital holography.” Journal of Biomedical Optics. Cited by 45 articles.

Dai, C., et al. (2015). “Advancements in three-dimensional endoscopic imaging.” Optics Express. Cited by 60 articles.

Dai, C., et al. (2018). “Nonlinear optical properties in biomedical imaging applications.” Applied Optics. Cited by 35 articles.

Dai, C., et al. (2020). “Enhancing digital holography techniques for medical diagnostics.” Journal of Optical Society of America B. Cited by 50 articles.

Dai, C., et al. (2022). “Functional imaging techniques for real-time endoscopic visualization.” Scientific Reports. Cited by 40 articles.

Dai, C., et al. (2023). “Machine learning approaches in biomedical imaging.” Nature Communications. Cited by 55 articles.

Dai, C., et al. (2024). “Recent trends in holographic imaging for medical applications.” IEEE Transactions on Medical Imaging. Cited by 30 articles.

Conclusion

Cuixia Dai has made significant contributions to optical engineering and biomedical imaging through her research, education, and international collaborations. Her work has advanced digital holography, spatial three-dimensional imaging, and biomedical optical imaging, leading to improved diagnostic techniques in ophthalmology and endoscopy. With numerous prestigious publications and recognition for her research excellence, she continues to drive innovation in biomedical imaging technologies. Her academic and professional achievements underscore her impact on the field, positioning her as a leading researcher dedicated to advancing medical imaging science.

Deepak Parashar | Deep Learning | Best Researcher Award

Dr. Deepak Parashar | Deep Learning | Best Researcher Award

Associate Professor | GSFC University Vadodara Gujarat | India

Dr. Deepak Parashar is an accomplished academician and researcher specializing in Artificial Intelligence and Machine Learning. He is currently serving as an Associate Professor in the Department of Computer Science & Engineering at the School of Technology, GSFC University, Vadodara, Gujarat, India. With over 14 years of academic and research experience, Dr. Parashar has contributed significantly to the field of medical image analysis and computer vision. His expertise lies in developing AI-driven diagnostic solutions, particularly for glaucoma detection. Throughout his career, he has been dedicated to fostering research, mentoring students, and advancing technological innovation in healthcare.

Profile

Scopus

Education

Dr. Parashar holds a Ph.D. in AI & Machine Learning, with a specialization in medical imaging, from Maulana Azad National Institute of Technology (NIT), Bhopal, India, awarded in February 2022. His thesis focused on improving the classification of glaucoma in retinal fundus images using image decomposition techniques under the supervision of Dr. D. K. Agrawal. He completed his M.Tech. from SGSITS Indore in 2011 and earned his B.E. degree from Indira Gandhi Government Engineering College, Sagar, in 2008. His academic journey started at Jawahar Navodaya Vidyalaya, Ratlam, MP, India, where he completed his schooling under the CBSE Board.

Experience

Dr. Parashar has held various academic and research positions throughout his career. Before joining GSFC University in May 2024, he served as an Assistant Professor at SIT Pune, Symbiosis International University, from 2022 to 2024. He was a Research Fellow at the Image Processing Research Lab, NIT Bhopal, from 2018 to 2022. Previously, he worked as an Assistant Professor in the Department of Electronics and Communication Engineering at G H Patel College of Engineering and Technology (2012-2017) and Shri Vaishnav Institute of Technology and Science (2011-2012). His career began as a Lecturer at Government Engineering College, Ujjain, in 2008.

Research Interests

Dr. Parashar’s research focuses on Artificial Intelligence, Machine Learning, Image Processing, and Medical Image Analysis. His primary interest is in developing automated diagnostic systems for medical applications, particularly in ophthalmology and dermatology. His work on glaucoma detection using AI-based techniques has contributed significantly to the field. He is currently involved in an AI-driven project for early melanoma detection, funded by the Indian Council of Medical Research (ICMR). His research aims to enhance the accuracy and efficiency of medical diagnostics through advanced computational techniques.

Awards and Achievements

Dr. Parashar has received numerous accolades for his contributions to research and academia. He was awarded a Doctoral Fellowship for the TEQIP-III funded project at NIT Bhopal from 2018 to 2022. He has also been recognized as a Senior Member of IEEE and is a GATE-qualified professional. Additionally, he has received the SERB-OVDF Fellowship acceptance and has been an active peer reviewer for reputed SCI journals and conferences hosted by IEEE, Elsevier, and Springer. His early achievements include recognition in the National Mathematics Olympiad Contest (2001) and the All India UN Information Test (1999).

Publications

Dr. Parashar has published extensively in high-impact journals and conferences.

“2-D Compact Variational Mode Decomposition Based Automatic Classification of Glaucoma Stages from Fundus Images” – IEEE Transactions on Instrumentation and Measurement, 2021.

“Automatic Classification of Glaucoma Stages Using Two-Dimensional Tensor Empirical Wavelet Transform” – IEEE Signal Processing Letters, 2021.

“Automated Classification of Glaucoma Stages Using Flexible Analytic Wavelet Transform from Retinal Fundus Images” – IEEE Sensors Journal, 2020. His research has been widely cited, contributing significantly to advancements in medical AI.

Conclusion

Dr. Deepak Parashar is a dedicated academician and researcher committed to advancing AI-driven solutions in medical imaging. With extensive experience in teaching and research, he has significantly contributed to the fields of AI, Machine Learning, and Computer Vision. His ongoing research and publications continue to impact the scientific community, making strides in automated healthcare diagnostics. As an educator and mentor, he remains focused on fostering student growth and innovation in technology, ensuring a positive and lasting influence on the future of AI applications in medicine.