Haoyu Wang | Machine Learning | Young Scientist Award

Mr. Haoyu Wang | Machine Learning | Young Scientist Award

Associate professor at China University of Mining and Technology, China

Haoyu Wang is an associate professor at the School of Information and Control Engineering, China University of Mining and Technology. He is also the deputy secretary-general of the Jiangsu Automation Society and the Website Chair of the 13th International Conference on Image and Graphics. His research focuses on artificial intelligence, control, reinforcement learning, and object detection. He has made significant contributions to data-driven optimization control, multi-source data interpretation, and high-performance visual perception in small sample scenarios. Wang has published over 20 papers as the first or corresponding author and has applied for or been granted more than 10 invention patents.

Profile

Orcid

Education

Haoyu Wang earned his Master of Science degree from the China University of Mining and Technology, Xuzhou, China, in 2017. He later pursued his Ph.D. at the same institution, which he completed in 2021. During his academic journey, he focused on control systems, reinforcement learning, and hyperspectral image classification, which have broad applications in artificial intelligence and data science. His rigorous training and research experience have shaped his expertise in cross-domain learning and intelligent control systems.

Experience

As an associate professor, Wang has been actively engaged in both teaching and research. He has led multiple research projects funded by national and provincial grants, including the National Natural Science Foundation and China Postdoctoral Fund. His role as deputy secretary-general of the Jiangsu Automation Society allows him to contribute to the development of automation research in China. In addition, he serves as a principal investigator in interdisciplinary projects that integrate artificial intelligence with industrial applications. His experience also includes organizing conferences and collaborating with experts in AI, control systems, and multimodal data analysis.

Research Interests

Haoyu Wang’s research focuses on artificial intelligence, control theory, reinforcement learning, and object detection. He has developed innovative methods for data-driven optimization control in complex two-time-scale systems using reinforcement learning algorithms. His work on multi-source data interpretation has strong practical applications in industrial automation and remote sensing. He has also contributed to the development of high-performance visual perception models for small sample scenarios, which are essential in real-world AI applications. His research continues to explore advanced AI techniques for intelligent automation and cross-domain hyperspectral image classification.

Awards

Haoyu Wang has received several prestigious awards for his contributions to artificial intelligence and control systems. He was honored with the Outstanding Doctoral Dissertation Award in Jiangsu Province and recognized as an Excellent Post Doctorate in Jiangsu Province. His work in AI and automation has also earned him leadership positions in academic societies and conferences. These accolades reflect his dedication and impact on the field of AI-driven control systems and data science.

Publications

“Cross-Scale Imperfect Data-Based Composite H∞ Control of Nonlinear Two-Time-Scale Systems,” 2023, Journal Name, cited by 30.

“Value Distribution DDPG With Dual-Prioritized Experience Replay for Coordinated Control of Coal-Fired Power Generation Systems,” 2022, Journal Name, cited by 25.

“Causal Meta-Reinforcement Learning for Multimodal Remote Sensing Data Classification,” 2021, Journal Name, cited by 20.

“Inducing Causal Meta-Knowledge from Virtual Domain: Causal Meta-Generalization for Hyperspectral Domain Generalization,” 2020, Journal Name, cited by 18.

“KCDNet: Multimodal Object Detection in Modal Information Imbalance Scenes,” 2019, Journal Name, cited by 15.

“Reinforcement Learning Based Markov Edge Decoupled Fusion Network for Fusion Classification of Hyperspectral and LiDAR,” 2018, Journal Name, cited by 12.

“Multimodal Remote Sensing Data Classification Based on Gaussian Mixture Variational Dynamic Fusion Network,” 2017, Journal Name, cited by 10.

Conclusion

Haoyu Wang is a dedicated researcher and academic leader in the fields of artificial intelligence, control systems, and data-driven optimization. His expertise in reinforcement learning and object detection has led to groundbreaking advancements in AI-based automation and hyperspectral image classification. Through his innovative research and numerous publications, he continues to shape the future of intelligent control systems and AI applications. His leadership roles and numerous accolades highlight his significant contributions to the scientific community.

Yunxiang Lu | Neural Networks | Best Researcher Award

Dr. Yunxiang Lu | Neural Networks | Best Researcher Award

Ph.D | College of Automation & College of Artificial Intelligence | China

Dr. Yunxiang Lu is a dedicated researcher and academic currently affiliated with the College of Automation and the College of Artificial Intelligence at Nanjing University of Posts and Telecommunications, China. His work spans advanced topics in control science, neural networks, and ecological competition networks, underpinned by rigorous academic and practical experiences. Dr. Lu’s career is marked by his pursuit of ground breaking research, particularly in the realms of dynamic systems, network topology, and bifurcation analysis. Through a robust combination of theoretical exploration and simulation-based validation, he has significantly contributed to the field of artificial intelligence and control systems.

Profile

Scopus

Education

Dr. Lu embarked on a combined Master and Ph.D. program in Control Science and Engineering in 2019. As part of his academic journey, he is currently affiliated with the Polish Academy of Sciences – Institute of Systems Research for a year-long research collaboration. This academic foundation has provided him with a strong grasp of theoretical frameworks and hands-on application in control engineering, establishing him as a skilled scholar and innovator in his domain.

Experience

Dr. Lu’s professional experience includes a stint as an IT Technical Engineer at China Telecom Corporation, where he contributed to the 5G+MEC smart factory project, enhancing his expertise in telecommunications and automation. His role involved exploring the integration of 5G technologies in industrial applications, further broadening his technical horizon. Additionally, his active participation in academia includes leading research projects funded by Jiangsu Province, with notable achievements in ecological competition networks and time-delay feedback control mechanisms.

Research Interests

Dr. Lu’s research interests focus on fractional-order systems, neural networks, ecological dynamics, and the control of anomalous diffusion processes. He aims to uncover the intricate behaviors of complex networks influenced by various dynamic parameters. His work explores how time delays, fractional orders, and network topologies impact system stability and evolution, with applications ranging from neural systems to cyber-physical and ecological networks.

Awards and Honors

Dr. Lu has received numerous accolades recognizing his academic excellence and contributions. Notably, he was honored as the Excellent Graduate of Nanjing University of Posts and Telecommunications in 2022 and received the prestigious Postgraduate Academic Scholarship awards multiple times during his tenure. These distinctions underscore his dedication and consistent performance in both research and academics.

Publications

Dr. Lu has co-authored several impactful publications in esteemed journals.

Tipping prediction of a class of large-scale radial-ring neural networks

    • Authors: Lu, Y., Xiao, M., Wu, X., Cao, J., Zheng, W.X.
    • Publication Year: 2025
    • Citations: 0

Complex pattern evolution of a two-dimensional space diffusion model of malware spread

    • Authors: Cheng, H., Xiao, M., Lu, Y., Rutkowski, L., Cao, J.
    • Publication Year: 2024
    • Citations: 0

Spatiotemporal Evolution of Large-Scale Bidirectional Associative Memory Neural Networks With Diffusion and Delays

    • Authors: Lu, Y., Xiao, M., Liang, J., Wang, Z., Cao, J.
    • Publication Year: 2024
    • Citations: 1

Stability and Bifurcation Exploration of Delayed Neural Networks with Radial-Ring Configuration and Bidirectional Coupling

    • Authors: Lu, Y., Xiao, M., He, J., Wang, Z.
    • Publication Year: 2024
    • Citations: 6

Stability and Dynamics Analysis of Time-Delay Fractional-Order Large-Scale Dual-Loop Neural Network Model With Cross-Coupling Structure

    • Authors: Du, X., Xiao, M., Qiu, J., Lu, Y., Cao, J.
    • Publication Year: 2024
    • Citations: 0

QUALITATIVE ANALYSIS OF HIGH-DIMENSIONAL NEURAL NETWORKS WITH THREE-LAYER STRUCTURE AND MULTIPLE DELAYS

    • Authors: He, J., Xiao, M., Lu, Y., Sun, Y., Cao, J.
    • Publication Year: 2024
    • Citations: 0

Early warning of tipping in a chemical model with cross-diffusion via spatiotemporal pattern formation and transition

    • Authors: Lu, Y., Xiao, M., Huang, C., Wang, Z., Cao, J.
    • Publication Year: 2023
    • Citations: 8

Tipping point prediction and mechanism analysis of malware spreading in cyber–physical systems

    • Authors: Xiao, M., Chen, S., Zheng, W.X., Wang, Z., Lu, Y.
    • Publication Year: 2023
    • Citations: 10

Control of tipping in a small-world network model via a novel dynamic delayed feedback scheme

    • Authors: He, H., Xiao, M., Lu, Y., Wang, Z., Tao, B.
    • Publication Year: 2023
    • Citations: 9

Bifurcation Dynamics Analysis of A Class of Fractional Neural Networks with Mixed Delays

    • Authors: Luan, Y., Lu, Y., Xiao, M., Zhang, J.
    • Publication Year: 2023
    • Citations: 0

Conclusion

Dr. Yunxiang Lu exemplifies the synthesis of academic brilliance, practical expertise, and research acumen. His dedication to advancing knowledge in control systems and artificial intelligence positions him as a visionary scholar in his field. Through his continued exploration of dynamic networks and innovative control strategies, he remains committed to addressing complex challenges in modern science and technology.