Daojun Liang | Time Series Analysis | Best Researcher Award

Mr. Daojun Liang | Time Series Analysis | Best Researcher Award

PhD student | Shandong University | China

Mr. Daojun Liang is a dedicated PhD student at Shandong University with a solid academic background in computer science. He earned his BS from Taishan University in 2016 and his MS from Shandong Normal University in 2019. Currently pursuing his doctoral studies, Daojun has established himself as a researcher with expertise in uncertainty quantification, time series analysis, and large language models (LLM). Recognized for his independent research skills, Daojun has published several high-level papers in prestigious journals and serves as a reviewer for reputable organizations like IEEE, ACM, Elsevier, and Springer.

Profile

Scholar

Education

Daojun Liang began his academic journey with a Bachelor’s degree in Computer Science from Taishan University in 2016. Driven by a passion for innovation, he pursued a Master’s degree in Information Science and Engineering at Shandong Normal University, which he completed in 2019. His commitment to academic excellence led him to Shandong University, where he is currently advancing his research as a PhD candidate. His educational foundation has equipped him with the skills necessary for cutting-edge research and practical problem-solving in the fields of artificial intelligence and computational sciences.

Experience

Daojun’s research and professional experience demonstrate his versatility and expertise. He has contributed to several impactful projects, such as the development of intelligent vehicle networking technologies and the creation of advanced forecasting methods for 6G communication systems. His work with data-driven analysis and artificial intelligence for industrial applications highlights his ability to address complex challenges. Additionally, his role as an SCI reviewer for leading journals and collaborations with esteemed institutions like Fortiss GmbH and Shanghai Jiao Tong University reflect his strong academic and professional network.

Research Interests

Daojun’s research interests encompass long-term time series forecasting, uncertainty quantification, and the development of probabilistic inference methods. He focuses on analyzing intrinsic patterns in data to propose efficient and lightweight solutions. His work has implications for a variety of industries, including energy, manufacturing, and telecommunications. Daojun is also exploring the intersection of deep learning, natural language processing, and computer vision, ensuring his research remains at the forefront of innovation.

Awards and Recognitions

Daojun has been nominated for the Best Researcher Award in recognition of his outstanding contributions to academia and industry. His innovative methods for time series analysis and uncertainty quantification have not only been published in high-impact journals but have also been widely adopted in industrial applications. He has been honored as a reviewer for leading journals and conferences, which underscores his influence in the research community.

Publications

Liang, D., Zhang, H., Yuan, D., Zhang, M. (2024). Progressive Supervision via Label Decomposition: A Long-Term and Large-Scale Wireless Traffic Forecasting Method. Knowledge-Based Systems, 305, p.112622. (SCI Q1, IF = 7.2). Cited by 10.

Liang, D., Zhang, H., Yuan, D., Zhang, M. (2024). Periodformer: An Efficient Long-Term Time Series Forecasting Method Based on Periodic Attention. Knowledge-Based Systems, 304, p.112556. (SCI Q1, IF = 7.2). Cited by 8.

D. Liang, H. Zhang, D. Yuan, M. Zhang. (2024). Multi-Head Encoding for Extreme Label Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence. (SCI Q1, IF = 20.8). Cited by 15.

Liang, D., Yang, F., Wang, X., et al. (2019). Multi-Sample Inference Network. IET Computer Vision, 13(6), 605-613. (SCI Q1, IF = 1.7). Cited by 12.

Liang, D., Zhang, H., Yuan, D., et al. (2025). DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting. ACM SigKDD 2025. Cited by 5.

Conclusion

Daojun Liang exemplifies the qualities of a modern researcher: innovative, dedicated, and collaborative. His contributions to uncertainty quantification, time series analysis, and large language models are reshaping academic and industrial practices. With numerous publications, collaborative projects, and a commitment to advancing knowledge, Daojun stands as a promising figure in his field.

Shaojin Ma | Predictive Analytics | Best Researcher Award

Dr. Shaojin Ma | Predictive Analytics | Best Researcher Award

China Agriculture University | China

Dr. Shaojin Ma is a prominent researcher at China Agricultural University, specializing in food quality, safety, and non-destructive testing technologies. With a focus on innovative techniques like spectroscopy and laser-induced fluorescence, Ma has significantly contributed to the field of agricultural engineering. His work aims to improve food safety, quality monitoring, and processing, with particular attention to non-invasive analysis methods for food products such as grains, legumes, and peppers. He has published extensively in top-tier journals, establishing himself as a key figure in food science and agricultural engineering.

Profile

Scopus

Education

Shaojin Ma completed his higher education at China Agricultural University, where he earned his degrees in agricultural engineering. His academic background laid a solid foundation for his career in food quality control and non-destructive testing. During his studies, he developed a strong interest in the application of optical and imaging technologies for food safety and quality monitoring, which has been the core of his subsequent research and academic contributions.

Experience

Dr. Ma’s professional career includes significant research work in agricultural engineering and food science. He is currently affiliated with China Agricultural University, where he collaborates with various academic and industry experts to advance food safety technologies. Over the years, he has worked on multiple projects focused on food quality, precision agriculture, and the development of portable devices for food testing. His research has led to the development of innovative non-invasive techniques for assessing food quality, particularly in the processing and storage of fruits, vegetables, and grains.

Research Interests

Shaojin Ma’s research interests primarily revolve around the application of advanced optical and imaging technologies in the food industry. He is particularly focused on non-destructive testing methods such as LED and laser-induced fluorescence for quality control in agricultural products. Ma’s work also explores the use of spectroscopy, computer vision, and deep learning to monitor food safety and detect contaminants. His research extends to improving the efficiency and accuracy of food analysis techniques, offering practical solutions for the food processing industry.

Awards

Shaojin Ma has been recognized for his contributions to food science and engineering, receiving several awards for his innovative research. His work in non-destructive testing and food quality monitoring has earned him acclaim in both academic and industrial circles. Although specific awards are not listed, his research excellence and influential publications have positioned him as a leader in his field.

Publications

Shaojin Ma has published a selection of impactful articles in prestigious journals related to food science and agricultural engineering. His notable publications include:

Fusion of visible and fluorescence imaging through deep neural network for color value prediction of pelletized red peppers

    • Authors: Ma, S., Li, Y., Peng, Y., Wang, W., Zhang, Y.
    • Publication Year: 2024
    • Citations: 0

A portable dual-gear device for non-destructive testing on multi-quality of citrus

    • Authors: Li, Y., Wu, J., Wang, W., Ma, S.
    • Publication Year: 2023
    • Citations: 3

Rapid detection of lactic acid bacteria in yogurt based on laser-induced fluorescence

    • Authors: Ma, S., Li, Y., Peng, Y., Wang, Q.
    • Publication Year: 2023
    • Citations: 0

Toward commercial applications of LED and laser-induced fluorescence techniques for food identity, quality, and safety monitoring: A review

    • Authors: Ma, S., Li, Y., Peng, Y., Wang, W.
    • Publication Year: 2023
    • Citations: 8

Spectroscopy and computer vision techniques for noninvasive analysis of legumes: A review

    • Authors: Ma, S., Li, Y., Peng, Y.
    • Publication Year: 2023
    • Citations: 15

Design and Experiment of a Handheld Multi-Channel Discrete Spectrum Detection Device for Potato Processing Quality

    • Authors: Wang, W., Li, Y.-Y., Peng, Y.-K., Yan, S., Ma, S.-J.
    • Publication Year: 2022
    • Citations: 1

Research Progress of Rapid Optical Detection Technology and Equipment for Grain Quality

    • Authors: Nie, S., Ma, S., Peng, Y., Wang, W., Li, Y.
    • Publication Year: 2022
    • Citations: 3

Predicting ASTA color values of peppers via LED-induced fluorescence

    • Authors: Ma, S., Li, Y., Peng, Y., Yan, S., Wang, W.
    • Publication Year: 2022
    • Citations: 8

Detection of nitrofurans residues in honey using surface-enhanced Raman spectroscopy

    • Authors: Yan, S., Li, Y., Peng, Y., Ma, S., Han, D.
    • Publication Year: 2022
    • Citations: 14

An intelligent and vision-based system for Baijiu brewing-sorghum discrimination

    • Authors: Ma, S., Li, Y., Peng, Y., Yan, S., Zhao, X.
    • Publication Year: 2022
    • Citations: 8

These publications have been cited by numerous articles, reflecting their impact in the scientific community.

Conclusion

Shaojin Ma has established himself as a leading researcher in the field of agricultural engineering and food science. His work on non-destructive testing techniques has enhanced the monitoring and improvement of food quality and safety. Through his publications, he has made significant strides in the application of advanced technologies for food analysis, benefiting both the scientific community and the food industry. With a career focused on innovation and practical solutions, Dr. Ma continues to contribute to the advancement of food safety technologies, setting a high standard for future research in this domain.