Dr. Kuai Zhou | Computer Vision | Young Researcher Award
Lecturer at School of Aeronautical Engineering | Nanjing University of Industry Technology | China
Kuai Zhou is an emerging researcher in advanced aerospace manufacturing whose work integrates computer vision, deep learning, robotic automation, and precision aircraft assembly, positioning him as a promising contributor to the evolution of intelligent manufacturing systems. With a strong academic foundation in aerospace manufacturing engineering, he has developed deep expertise in visual measurement, robotic manipulation, and metrology for complex assembly tasks, building a portfolio of impactful publications and patented innovations that highlight both technical rigor and forward-looking research ambition. His scholarly contributions span high-quality scientific journals, where he has advanced methods for monocular visual measurement, high-precision six-degree-of-freedom pose estimation, super-resolution-enhanced assembly accuracy, convolutional-neural-network-based calibration techniques, adaptive insertion strategies, and robust machine-vision algorithms designed for the precise alignment and assembly of intricate components. These works collectively contribute to overcoming long-standing challenges in accuracy, automation, and reliability within large-scale aircraft assembly environments. Beyond his academic achievements, he has played an important role in national research initiatives focused on aerospace innovation, contributing to technological development in areas requiring high-precision visual sensing, automated alignment, and intelligent robotic assistance. His research and patented solutions consistently emphasize the integration of theoretical modeling with practical engineering, enabling more efficient workflows, reducing human dependence in critical assembly processes, and strengthening the foundational technologies required for future aerospace manufacturing ecosystems. With recognized expertise in computer vision, robotics, automation, and image processing, he continues to push the boundaries of intelligent aircraft assembly, helping shape the next generation of smart manufacturing and autonomous industrial systems while establishing himself as a rising figure in the field of aerospace engineering.
Featured Publications
Kong, S. H. J., Huang, X., & Zhou, K. (2023). Online measurement method for assembly pose of gear structure based on monocular vision. Measurement Science and Technology, 34(6), 065110.
Kong, S. H. J., Huang, X., Zhou, K., & Li, H. Y. (2021). Detection method of addendum circle of gear structure based on machine vision. Chinese Journal of Scientific Instrument, 42(4), 247–255.
Li, H., Huang, X., Chu, W., Zhou, K., & Zhao, Z. (2021). 一种面向齿形结构装配的视觉测量方法. Laser & Optoelectronics Progress, 58(16), 1610003.
Zhou, K., Huang, X., Li, S., Li, H., & Kong, S. (2021). 6-D pose estimation method for large gear structure assembly using monocular vision. Measurement, 183, 109854.
Zhou, K., Huang, X., Li, S., & Li, G. (2023). Convolutional neural network-based pose mapping estimation as an alternative to traditional hand–eye calibration. Review of Scientific Instruments, 94(6).
Zhou, K., Huang, X., Li, S., & Li, G. (2023). Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution. Review of Scientific Instruments, 94(6).