Dr. Pankaj Kumar | Machine learning | Best Researcher Award

Dr. Pankaj Kumar | Machine learning | Best Researcher Award

Assistant Professor, National Institute of Technology, Hamirpur

Dr. Pankaj Kumar is a researcher specializing in operations research, optimization methods in finance, interval optimization, machine learning and crop area planning. He earned a Ph.D. in Optimization Methods in Finance from the Indian Institute of Technology Kharagpur with his thesis on interval optimization methods for portfolio selection, and holds earlier advanced degrees in operations research and mathematics. Dr. Pankaj Kumar has served in research and teaching roles—most recently as Assistant Professor—focusing on modelling of portfolio optimization, multi-objective programming, time-series forecasting, and risk measures such as mean-VaR. His professional experience includes supervising research students, contributing to international and national collaborative projects, participating in workshops and conferences, and Dr. Pankaj Kumar’s scholarly output includes more than thirty peer-reviewed papers published in high-impact journals indexed by SCIE, Scopus, and Web of Science, and his work has attracted more than 360 citations with an h-index of 10, reflecting consistent academic influence. His research skills include mathematical modelling, statistical methods, algorithm design, programming in C and R, use of optimisation tools and applying machine learning regression techniques in finance contexts. Among his awards and honors are travel grants, junior/senior research fellowships, editorial board membership, and recognition for teaching and research excellence at his institution. In conclusion, Dr. Pankaj Kumar is positioned to further impact the fields of financial optimization and decision science through high-quality publications, interdisciplinary collaborations, and mentoring, likely to increase his citation profile, visibility, and leadership in both academic and applied settings.

Profile: GOOGLE SCHOLAR | SCOPUS | ORCID

Featured Publications

Behera, J., & Kumar, P. (2025). An approach to portfolio optimization with time series forecasting algorithms and machine learning techniques. Applied Soft Computing, 170, 112741.

Sahu, B. R. B., & Kumar, P. (2025). Portfolio rebalancing model utilizing support vector machine for optimal asset allocation. Arabian Journal for Science and Engineering, 50(14), 10939–10965.

Sahu, B. R. B., Bhurjee, A. K., & Kumar, P. (2024). Efficient solutions for vector optimization problem on an extended interval vector space and its application to portfolio optimization. Expert Systems with Applications, 249, 123653.

Behera, J., & Kumar, P. (2024). Implementation of machine learning-based sparse Sharpe ratio portfolio optimization: A case study on Indian stock market. Operational Research, 24(4), 62.

Patel, M., Behera, J., & Kumar, P. (2024). Parametric approach for multi-objective enhanced interval linear fractional programming problem. Engineering Optimization, 56(5), 740–765.

Abdultaofeek Abayomi | Machine Learning | Best Researcher Award

Dr. Abdultaofeek Abayomi | Machine Learning | Best Researcher Award

Researcher at Walter Sisulu University, South Africa

ABDULTAOFEEK ABAYOMI, Ph.D., is a distinguished academic and researcher with a rich career in Information Technology and Computer Science. He holds a Ph.D. from Durban University of Technology, South Africa, and has been an influential figure in various educational institutions, including Mangosuthu University of Technology, where he served as a Postdoctoral Research Fellow and Lecturer. His extensive experience spans roles in teaching, research, and industry, with a specific focus on ICT, machine learning, and telecommunications. Dr. Abayomi’s contributions extend beyond academia, having held positions in major banks and IT firms, where he influenced projects in system analysis, IT infrastructure, and banking operations.

Profile

Orcid

Education

Dr. Abayomi’s academic journey began with a B.Sc. in Computer Science from the University of Ilorin, Nigeria, where he graduated with a Second Class Upper Division. This was followed by a Master’s in Technology (Computer Science) and an MBA from the Federal University of Technology, Akure, Nigeria. He then pursued a Ph.D. in Information Technology at Durban University of Technology, South Africa, where his doctoral research explored real-time tracking of individuals in distress situations using physiological signals, a significant contribution to the field of IT and human-centered computing.

Experience

Dr. Abayomi’s professional career spans teaching, research, and leadership roles in the technology sector. He has lectured and conducted research at various universities, including Durban University of Technology and Mangosuthu University of Technology in South Africa. Additionally, he has worked as a system analyst and instructor for IT certifications such as MCSE and MCSA at JIT Solutions in Akure, Nigeria. His career in the banking sector includes roles as a Profit Centre Manager and ICT System Administrator at United Bank for Africa Plc., where he contributed to improving operational efficiency and implementing IT solutions. Dr. Abayomi has also been involved in research projects aimed at addressing pressing issues in ICT and society, particularly focusing on the intersection of technology and human needs.

Research Interests

Dr. Abayomi’s research interests lie at the convergence of Information Technology, machine learning, and network systems. His work has explored deep learning, cognitive radio networks, spectrum sensing, and software-defined networks. He is particularly interested in the application of artificial intelligence to solve real-world problems, such as dynamic spectrum access and health insurance prediction. Dr. Abayomi’s research aims to improve the way technology interacts with human and environmental factors, making significant contributions to both academic and applied research.

Awards

Dr. Abayomi has received numerous accolades in recognition of his academic and research excellence. He was honored with the Research Award for Most Productive Postdoctoral Research Fellow in 2022 at Mangosuthu University of Technology, South Africa. He has also been an active participant in international conferences, serving as a session chair for various events such as the 22nd International Conference on Hybrid Intelligent Systems in 2022 and the 13th International Conference on Soft Computing and Pattern Recognition in 2021. His contributions to research are further exemplified by his involvement in winning the South African National Research Foundation’s Infrastructure Bridging Funding in 2016.

Publications

Dr. Abayomi’s scholarly work is well-regarded in academic circles, with several impactful publications in peer-reviewed journals. His notable publications include:

Ukpong, U.C., Idowu-Bismark, O., Adetiba, E., Kala, J.R., Owolabi, E., Oshin, O., Abayomi, A., Dare, O.E. (2025). “Deep reinforcement learning agents for dynamic spectrum access in television whitespace cognitive radio networks.” Scientific African, 27, e02523.

Dare, O.E., Okokpujie, K., Adetiba, E., Idowu-Bismark, O., Abayomi, A., Kala, R.J., Owolabi, E., Ukpong, U.C. (2024). “Development of a Conditional Generative Adversarial Network Model for Television Spectrum Radio Environment Mapping.” IEEE Access, 12, 197632-197644.

Mavundla, K., Thakur, S., Adetiba, E., Abayomi, A. (2024). “Predicting Cross-Selling Health Insurance Products Using Machine-Learning Techniques.” Journal of Computer Information Systems.

Adetiba, E., Uzoatuegwu, P.C., Ifijeh, A.H., Abayomi, A., Obiyemi, O. (2024). “NomadicBTS-2: A Network-in-a-Box with Software-Defined Radio and Web Based App for Multiband Cellular Communication.” International Journal of Computing and Digital Systems, 15(1), 1-16.

Aroba, O.J., Abayomi, A. (2023). “An Implementation of SAP Enterprise Resource Planning – A Case Study of the South African Revenue Services and Taxation Sectors.” Cogent Social Sciences.

These publications reflect his diverse research interests and his significant impact on fields ranging from telecommunications to machine learning and health technology.

Conclusion

Dr. Abayomi’s academic and professional journey is a testament to his dedication to advancing knowledge in Information Technology and its application to solving societal challenges. His work has influenced both the academic community and industry practices, particularly in the areas of cognitive radio networks, machine learning, and ICT solutions for societal development. His numerous accolades and impactful publications underscore his standing as a leading researcher in his field, and his continued contributions promise further advancements in the intersection of technology and human development.