Lakshmi Devi P | Generative AI and LLM | AI Breakthrough Award

Mrs. Lakshmi Devi P | Generative AI and LLM | AI Breakthrough Award

Senior Associate – Data Scientist at JP Morgan& Chase, India

Lakshmi Devi P is a seasoned data science professional currently serving as a Senior Associate – Data Scientist at JPMorgan Chase, with additional academic contributions as an Adjunct Faculty member at the Manipal Academy of Higher Education (MAHE). With more than a decade of experience in artificial intelligence, machine learning, and data-driven innovation, she brings an expert lens to the domain of Generative AI and NLP. A published author, active mentor, and patent contributor, her work is grounded in ethical, scalable applications of AI that span enterprise systems and educational initiatives. Her leadership on GenAI solutions exemplifies innovation that drives measurable impact across sectors.

Profile

ORCID

Education

Lakshmi is currently pursuing her Ph.D. in Artificial Intelligence, where her research focuses on designing scalable and ethical AI systems. This doctoral journey builds upon her robust academic and professional background, including foundational degrees in computer science and information technology. Her academic rigor complements her industry-focused innovations, bridging the gap between theoretical advancements and real-world applications. As an Adjunct Faculty member at MAHE, she has also contributed to curriculum development and has trained over 900 learners in a single session, reinforcing her commitment to AI education and knowledge dissemination.

Experience

Over the course of her career, Lakshmi Devi P has built a dynamic portfolio combining technical expertise, leadership, and community engagement. At JPMorgan Chase, she leads multiple enterprise-grade AI initiatives such as Zoom Transcribe GenAI, real-time anomaly detection systems, and semantic search engines. Her prior engagements with Capgemini, RetailOn, and Honeywell involved diverse projects including sentiment analysis, ROI forecasting, and OCR-driven automation. Beyond her corporate role, her teaching position at MAHE and collaborations with academic bodies like CIT and SSIT have enabled her to mentor aspiring data scientists and contribute meaningfully to AI literacy.

Research Interest

Lakshmi’s primary research interests lie at the intersection of Generative AI, Natural Language Processing, and ethical AI frameworks. She is particularly focused on the integration of Large Language Models (LLMs) into software engineering and system architecture. Her patented method for using LLMs to generate updated software architectures is a hallmark of her contribution to AI-driven automation. Additional interests include real-time anomaly detection, AI infrastructure design, vector embeddings, and retrieval-augmented generation systems. Her emphasis on ethical and inclusive AI underlines her belief that technological advancement must align with social responsibility and fairness.

Award

Lakshmi has been nominated for the AI Breakthrough Award in recognition of her innovative work in deploying GenAI solutions within the financial sector, publishing educational content, and mentoring underrepresented groups in AI. Her achievements exemplify groundbreaking contributions across research, enterprise application, and community upliftment. Her involvement in the Force for Good initiative reflects her dedication to leveraging AI for meaningful societal impact.

Publication

Lakshmi Devi P has authored a book titled “Transformers and Beyond: Building the Next Generation of Generative AI Systems” (ISBN: 979-8281458283), offering deep insights into foundation models and multimodal AI. She has also published the following journal articles:

  1. Real Valued Outputs of Cab Bookings using Regression and Ensemble Techniques Comparison Analysis, IJ for Research & Development in Technology, Vol. 13(2), Feb 2020, IF: 6.88.

  2. IOT Based Illegal Trees Cutting Prevention and Monitoring with Web App Using Raspberry Pi, IJ of Innovative Research in Science, Engineering and Technology, Vol. 8(7), Jul 2019, IF: 7.089.

  3. IOT based Waste Management System for Smart City, IAETSD Journal for Advanced Research in Applied Sciences, Vol. 4(7), Dec 2017, IF: 5.2.

  4. Helmet using GSM and GPS Technology for Accident Detection and Reporting System, IJRITCC, Vol. 4(5), May 2016, IF: 5.837.

  5. Real Time Tele Health Monitoring System, IJRITCC, Vol. 4(3), Mar 2016, IF: 5.837.

  6. Matlab Code For Identification Of Graphics Objects In Aircraft Displays, IJRITCC, Vol. 4(3), Mar 2016, IF: 5.837.

  7. SMS based Home Automation using CAN Protocol, IJRITCC, Vol. 4(3), Mar 2016, IF: 5.837.

Each of these publications demonstrates Lakshmi’s commitment to blending practical solutions with academic rigor, often cited for their interdisciplinary applications in IoT, automation, and AI.

Conclusion

Lakshmi Devi P represents the archetype of a modern AI leader—technically adept, ethically grounded, and socially conscious. Her body of work spans patented innovations, impactful AI deployments in high-stakes industries, academic contributions, and grassroots mentorship. By aligning enterprise performance with societal benefits, she embodies the transformative promise of AI. Whether through cutting-edge research, large-scale training, or community initiatives, Lakshmi continues to push boundaries, making her a deserving candidate for the AI Breakthrough Award and a role model in the data science ecosystem.

Sara Masiero | Artificial Intelligence | Outstanding Contributions in Academia Award

Mrs. Sara Masiero | Artificial Intelligence | Outstanding Contributions in Academia Award

Collaboratrice at Scuola Universitaria Professionale della Svizzera Italiana, Switzerland

Sara Masiero is a dedicated and forward-thinking management engineer with a strong passion for innovation and digital transformation. She thrives on discovering new concepts and implementing solutions that enhance industrial efficiency, sustainability, and resilience. A firm believer in the power of serenity, she fosters an environment conducive to creativity and proactive engagement. Beyond her professional endeavors, Sara embraces adventure and cultural exploration, always seeking experiences that resonate with her positive energy.

Profile

Scopus

Education

Sara Masiero pursued her higher education at the University of Applied Sciences and Arts of Southern Switzerland (SUPSI), where she obtained a Master of Science in Engineering (2018-2021). During her academic journey, she actively engaged in research projects focusing on optimizing industrial systems and integrating digital tools for process enhancement. Prior to her master’s degree, she earned a Bachelor of Science in Ingegneria Gestionale (2015-2018) from the same institution. She further honed her expertise through specialized programs, including the English Summer School at Horner School of English, AIGreen Business Lab by EIT Digital, and professional training in learning assessment methodologies.

Experience

Sara Masiero has amassed substantial experience in both academia and industry, contributing to projects that merge theoretical research with practical applications. Since November 2018, she has been serving as a scientific collaborator at SUPSI, where she plays a pivotal role in research and scientific development within the realm of Industry 4.0 and 5.0. Her work emphasizes human-centered industrial paradigms, sustainability, and resilience, while she also manages digital processes for EU H2020 projects and provides training in Industrial Engineering courses.

Between January 2023 and February 2024, Sara worked as a Business Process Manager at Masiero G. Srl and Z. Account Service Srl, overseeing financial and commercial processes related to sales, customer service, and supplier relations. She also ensured regulatory compliance and operational efficiency through effective bureaucratic and administrative process management. Earlier, she collaborated with STISA SA and LINNEA (September 2020 – February 2021) to develop her master’s thesis on optimizing material flows and warehouse layouts in logistics systems. Additionally, during her bachelor’s studies, she worked with RIRI SA (June 2018 – September 2018) on a thesis analyzing raw material purchasing processes with a focus on sustainability.

Research Interests

Sara Masiero’s research interests are deeply rooted in industrial innovation, digital transformation, and sustainability. She focuses on the integration of advanced digital tools in production systems, addressing the challenges and opportunities presented by Industry 4.0 and 5.0. Her work revolves around Quality Management advancements, human-centric industrial paradigms, and AI-driven digital platforms that enhance manufacturing processes. Furthermore, she explores methodologies for optimizing supply chain operations and ensuring regulatory compliance within rapidly evolving technological landscapes.

Awards and Recognition

Throughout her academic and professional journey, Sara has been recognized for her contributions to research and process optimization in industrial settings. Her innovative approach to digital transformation and industrial efficiency has earned her accolades in academic conferences and industry collaborations. She has actively participated in prestigious projects and workshops, further cementing her reputation as a knowledgeable and influential figure in the field of industrial engineering and management.

Publications

Corti, D., Masiero, S., & Gladysz, B. (2021). “Impact of Industry 4.0 on Quality Management: Identification of main challenges towards a Quality 4.0 approach.” IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1-8.

Masiero, S., Qosaj, J., & Cutrona, V. (2024). “Digital Datasheet model: enhancing value of AI digital platforms.” Procedia Computer Science, 232, 149-158.

Masiero, S., Qosaj, J., Bettoni, A., & Gladysz, B. (2024). “Technology-Driven Measures for Human Centricity in the Manufacturing Sector.” International Association for the Management of Technology Conference, pp. 81-88, Cham: Springer Nature Switzerland.

Conclusion

Sara Masiero exemplifies the essence of a modern engineer—one who seamlessly integrates research, industry expertise, and a passion for innovation. Her extensive experience in digital transformation, quality management, and process optimization makes her a valuable contributor to the fields of industrial engineering and management. With a strong academic background, diverse professional experience, and a commitment to sustainability and human-centric methodologies, Sara continues to drive meaningful advancements in Industry 4.0 and 5.0. Her contributions to research and industry projects underscore her ability to bridge theoretical knowledge with practical applications, paving the way for smarter, more resilient production systems in the future.

Yunxiang Lu | Neural Networks | Best Researcher Award

Dr. Yunxiang Lu | Neural Networks | Best Researcher Award

Ph.D | College of Automation & College of Artificial Intelligence | China

Dr. Yunxiang Lu is a dedicated researcher and academic currently affiliated with the College of Automation and the College of Artificial Intelligence at Nanjing University of Posts and Telecommunications, China. His work spans advanced topics in control science, neural networks, and ecological competition networks, underpinned by rigorous academic and practical experiences. Dr. Lu’s career is marked by his pursuit of ground breaking research, particularly in the realms of dynamic systems, network topology, and bifurcation analysis. Through a robust combination of theoretical exploration and simulation-based validation, he has significantly contributed to the field of artificial intelligence and control systems.

Profile

Scopus

Education

Dr. Lu embarked on a combined Master and Ph.D. program in Control Science and Engineering in 2019. As part of his academic journey, he is currently affiliated with the Polish Academy of Sciences – Institute of Systems Research for a year-long research collaboration. This academic foundation has provided him with a strong grasp of theoretical frameworks and hands-on application in control engineering, establishing him as a skilled scholar and innovator in his domain.

Experience

Dr. Lu’s professional experience includes a stint as an IT Technical Engineer at China Telecom Corporation, where he contributed to the 5G+MEC smart factory project, enhancing his expertise in telecommunications and automation. His role involved exploring the integration of 5G technologies in industrial applications, further broadening his technical horizon. Additionally, his active participation in academia includes leading research projects funded by Jiangsu Province, with notable achievements in ecological competition networks and time-delay feedback control mechanisms.

Research Interests

Dr. Lu’s research interests focus on fractional-order systems, neural networks, ecological dynamics, and the control of anomalous diffusion processes. He aims to uncover the intricate behaviors of complex networks influenced by various dynamic parameters. His work explores how time delays, fractional orders, and network topologies impact system stability and evolution, with applications ranging from neural systems to cyber-physical and ecological networks.

Awards and Honors

Dr. Lu has received numerous accolades recognizing his academic excellence and contributions. Notably, he was honored as the Excellent Graduate of Nanjing University of Posts and Telecommunications in 2022 and received the prestigious Postgraduate Academic Scholarship awards multiple times during his tenure. These distinctions underscore his dedication and consistent performance in both research and academics.

Publications

Dr. Lu has co-authored several impactful publications in esteemed journals.

Tipping prediction of a class of large-scale radial-ring neural networks

    • Authors: Lu, Y., Xiao, M., Wu, X., Cao, J., Zheng, W.X.
    • Publication Year: 2025
    • Citations: 0

Complex pattern evolution of a two-dimensional space diffusion model of malware spread

    • Authors: Cheng, H., Xiao, M., Lu, Y., Rutkowski, L., Cao, J.
    • Publication Year: 2024
    • Citations: 0

Spatiotemporal Evolution of Large-Scale Bidirectional Associative Memory Neural Networks With Diffusion and Delays

    • Authors: Lu, Y., Xiao, M., Liang, J., Wang, Z., Cao, J.
    • Publication Year: 2024
    • Citations: 1

Stability and Bifurcation Exploration of Delayed Neural Networks with Radial-Ring Configuration and Bidirectional Coupling

    • Authors: Lu, Y., Xiao, M., He, J., Wang, Z.
    • Publication Year: 2024
    • Citations: 6

Stability and Dynamics Analysis of Time-Delay Fractional-Order Large-Scale Dual-Loop Neural Network Model With Cross-Coupling Structure

    • Authors: Du, X., Xiao, M., Qiu, J., Lu, Y., Cao, J.
    • Publication Year: 2024
    • Citations: 0

QUALITATIVE ANALYSIS OF HIGH-DIMENSIONAL NEURAL NETWORKS WITH THREE-LAYER STRUCTURE AND MULTIPLE DELAYS

    • Authors: He, J., Xiao, M., Lu, Y., Sun, Y., Cao, J.
    • Publication Year: 2024
    • Citations: 0

Early warning of tipping in a chemical model with cross-diffusion via spatiotemporal pattern formation and transition

    • Authors: Lu, Y., Xiao, M., Huang, C., Wang, Z., Cao, J.
    • Publication Year: 2023
    • Citations: 8

Tipping point prediction and mechanism analysis of malware spreading in cyber–physical systems

    • Authors: Xiao, M., Chen, S., Zheng, W.X., Wang, Z., Lu, Y.
    • Publication Year: 2023
    • Citations: 10

Control of tipping in a small-world network model via a novel dynamic delayed feedback scheme

    • Authors: He, H., Xiao, M., Lu, Y., Wang, Z., Tao, B.
    • Publication Year: 2023
    • Citations: 9

Bifurcation Dynamics Analysis of A Class of Fractional Neural Networks with Mixed Delays

    • Authors: Luan, Y., Lu, Y., Xiao, M., Zhang, J.
    • Publication Year: 2023
    • Citations: 0

Conclusion

Dr. Yunxiang Lu exemplifies the synthesis of academic brilliance, practical expertise, and research acumen. His dedication to advancing knowledge in control systems and artificial intelligence positions him as a visionary scholar in his field. Through his continued exploration of dynamic networks and innovative control strategies, he remains committed to addressing complex challenges in modern science and technology.